Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Axion-Teilchen in einem Festkörperkristall gesichtet

08.10.2019

Wissenschaftler des Max-Planck-Instituts für chemische Physik fester Stoffe in Dresden, der Princeton Universität, der Universität Illinois und der Universität der chinesischen Akademie der Wissenschaften haben ein bekanntermaßen schwer fassbares Teilchen entdeckt: Das Axion – vor 42 Jahren erstmals als Elementarteilchen in Erweiterungen des Standardmodells der Teilchenphysik vorhergesagt.

Das Team fand Signaturen von Axion-Teilchen, die aus Weyl-Elektronen im korrelierten topologischen Halbmetall (TaSe₄)₂I bestehen. Bei Raumtemperatur ist (TaSe₄)₂I ein eindimensionaler Kristall, der Weyl Fermion-artig Elektronen enthält, die elektrischen Strom leiten. Durch Abkühlen von (TaSe₄)₂I unter -11 °C, kondensieren diese Elektronen selbst zu einem Kristall – einer sogenannten „Ladungsdichtewelle“ – die das darunterliegende Kristallgitter der Atome verzerrt.


Schema eines Weyl-Halbmetall-basierten Axion Isolators.

Johannes Gooth, MPI CPfS

Die anfänglich freien Weyl-Fermionen sind nun lokalisiert und das Weyl Halbmetall (TaSe₄)₂I wird zu einem Axion-Isolator. Ähnlich wie in metallischen atomaren Kristallen freie Elektronen existieren, beherbergt der elektronische "Ladungsdichtewellen"-Kristall auf Weyl-Halbmetallbasis freie Axionen, die elektrischen Strom leiten können. Solche Axion-Teilchen verhalten sich jedoch ganz anders als die bekannteren Elektronen.

Wenn diese parallelen elektrischen und magnetischen Feldern ausgesetzt sind, erzeugen sie einen anormalen positiven Beitrag zur magnetoelektrischen Leitfähigkeit.

Basierend auf Vorhersagen von Andrei Bernevigs Gruppe an der Princeton Universität, hat die Gruppe von Claudia Felser in Dresden das Ladungsdichtewellen-Weyl-Halbmetall (TaSe4)₂I hergestellt und die elektrische Leitung in diesem Material unter dem Einfluss elektrischer und magnetischer Felder erforscht. Dabei wurde festgestellt, dass der elektrische Strom in diesem Material unter -11 °C tatsächlich von Axion-Teilchen getragen wird.

Die Ergebnisse der Experimente wurden im Nature-Magazin veröffentlicht.

„Es ist sehr überraschend, dass Materialen, die wir meinen genau zu kennen, plötzlich solch interessante Quantenteilchen aufzeigen,“ sagt Claudia Felser.

Die Untersuchung der neuartigen Eigenschaften von Axion-Teilchen in „Tischversuchen“ könnte es Wissenschaftlern nicht nur ermöglichen, das mysteriöse Reich der Quantenteilchen besser zu verstehen, sondern auch das Feld stark korrelierter topologischer Materialien zu erschließen.

„Ein weiterer Baustein zu meinem Lebenstraum, mit Tischexperimenten in Festkörpern Ideen aus der Astro- und Hochenergiephysik zu realisieren.“ sagt Johannes Gooth.

Das Max-Planck-Institut für Chemische Physik fester Stoffe (MPI CPfS) in Dresden forscht mit dem Ziel, neue Materialien mit ungewöhnlichen Eigenschaften zu entdecken und zu verstehen.


Chemiker und Physiker, Synthetiker, Experimentatoren und Theoretiker untersuchen gemeinsam, wie sich die chemische Zusammensetzung, die Anordnung der Atome sowie äußere Kräfte auf die magnetischen, elektronischen und chemischen Eigenschaften der Verbindungen auswirken. Dazu wenden sie die modernsten Instrumente und Methoden an.

Neue Quantenmaterialien, -effekte und Materialien für Energieumwandlung sind das Ergebnis dieser interdisziplinären Zusammenarbeit.

Das MPI CPfS ( www.cpfs.mpg.de ) ist Teil der Max-Planck-Gesellschaft und wurde 1995 in Dresden gegründet. Es beschäftigt rund 280 Mitarbeiterinnen und Mitarbeiter, davon etwa 180 Wissenschaftlerinnen und Wissenschaftler inklusive 70 Promovierende.

Wissenschaftliche Ansprechpartner:

Johannes Gooth

johannes.gooth@cpfs.mpg.de

Originalpublikation:

Gooth, J. et al. Axionic charge-density wave in the Weyl semimetal (TaSe4)2I. Nature https://doi.org/10.1038/s41586-019-1630-4 (2019).

Weitere Informationen:

https://www.nature.com/articles/s41586-019-1630-4
https://doi.org/10.1038/s41586-019-1630-4
https://www.cpfs.mpg.de/3126182/20191007_04

Ingrid Rothe | Max-Planck-Institut für Chemische Physik fester Stoffe

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics