Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Spur des linearen Ubiquitins

21.03.2017

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung erfolgt auf viele verschiedene Arten, entweder einzeln oder in verzweigten Ketten aus mehreren Ubiquitin-Molekülen.


Schematische Darstellung von zwei linear verknüpften Ubiquitin-Molekülen. Die interne Markierungsstelle ist schwarz markiert.

Grafik: Koraljka Husnjak, erstellt mit PyMOL Software

Dadurch entstehen sehr unterschiedliche Strukturen, die wiederum verschiedenste Effekte in Zellen erzielen können. Wissenschaftler sprechen mittlerweile von einem regelrechten Geheimcode. Um diesen zu entschlüsseln, haben Forscher der Goethe-Universität in Zusammenarbeit mit Kollegen von der Universität von Tübingen, der Queen Mary Universität und dem Francis Crick Institut in London eine neue Methode entwickelt.

Erst vor wenigen Jahren entdeckten Forscher, dass Ubiquitin nicht nur verzweigte, sondern auch lineare Ketten bilden kann, bei denen jeweils der Anfang eines Ubiquitin-Moleküls an das Ende eines anderen geknüpft wird. Bislang sind erst zwei Enzyme bekannt, die den Auf- und Abbau solcher linearer Ubiquitin-Ketten regulieren. Beide werden im Institut für Biochemie II der Goethe-Universität intensiv erforscht.

Welche Zielproteine mit linearen Ubiquitin-Ketten modifiziert werden, und warum, blieb jedoch weitestgehend unklar. Die von dem Forscherteam um Koraljka Husnjak von der Goethe-Universität Frankfurt neu entwickelte Methode ermöglicht nun die systematische Analyse dieses speziellen Kettentypus.

„Der bislang vergleichsweise schleppende Fortschritt war vor allem darauf zurückzuführen, dass es keine geeigneten Methoden gab, um mit linearen Ubiquitin-Ketten modifizierte Proteine spezifisch im Massenspektrometer zu erfassen“, erklärt die gebürtige Kroatin Husnjak. Ihr Team hat das Problem gelöst, indem es das Ubiquitin-Molekül intern so veränderte, dass es einerseits innerhalb der Zelle funktionstüchtig bleibt, andererseits aber bei einer Analyse von Proteingemischen im Massenspektrometer erkannt werden kann.

Künftig lässt sich also genau nachweisen, welche Zielproteine durch lineares Ubiquitin verändert werden und an welcher Position des Proteins die entsprechende Modifikation sitzt. Die Wissenschaftler bewerten diesen neuen, äußerst sensitiven Ansatz als einen wichtigen Durchbruch, der zu einem bedeutend besseren Verständnis der Funktion der linearen Ubiquitinierung und ihrer Rolle bei Erkrankungen führen wird.

Dr. Husnjak konnte so bereits mehrere Proteine identifizieren, von denen bislang nicht bekannt war, dass sie linear ubiquitiniert werden. Unter anderem entdeckte sie neue essentielle Komponenten innerhalb eines Signalweges, der bei Entzündungen zentral ist.

„Die durch lineare Ubiquitin-Ketten übertragenen Signale spielen zum Beispiel eine wichtige Rolle bei der Regulation von Immunantworten, der Abwehr von Infektionen und bei immunologischen Erkrankungen. Bislang wissen wir nur ansatzweise, wie aus kleinen Fehlern in diesem System schwere Krankheiten entstehen und wie man gezielt therapeutisch eingreifen kann“, so die Forscherin über das Potential der neuen Methode.

Fehler im Ubiquitin-System werden mit zahlreichen Erkrankungen in Zusammenhang gebracht, so zum Beispiel mit der Entstehung von Krebs, mit neurodegenerativen Erkrankungen wie Parkinson, aber auch mit dem Verlauf von Infektionen und Entzündungen.

Publikation:
Katarzyna Kliza, Christoph Taumer, Irene Pinzuti, Mirita Franz-Wachtel, Simone Kunzelmann, Benjamin Stieglitz, Boris Macek & Koraljka Husnjak. Internally tagged ubiquitin: a tool to identify linear polyubiquitin-modified proteins by mass spectrometry. Nature Methods 2017. doi:10.1038/nmeth.4228


Informationen: Dr. Kerstin Koch, Institut für Biochemie II, Fachbereich 16, Universitätsklinikum Frankfurt, Tel.: (069) 6301 84250, k.koch@em.uni-frankfurt.de.

Aktuelle Nachrichten aus Wissenschaft, Lehre und Gesellschaft in GOETHE-UNI online (www.aktuelles.uni-frankfurt.de)

Die Goethe-Universität ist eine forschungsstarke Hochschule in der europäischen Finanzmetropole Frankfurt. 1914 mit privaten Mitteln überwiegend jüdischer Stifter gegründet, hat sie seitdem Pionierleistungen erbracht auf den Feldern der Sozial-, Gesellschafts- und Wirtschaftswissenschaften, Medizin, Quantenphysik, Hirnforschung und Arbeitsrecht. Am 1. Januar 2008 gewann sie mit der Rückkehr zu ihren historischen Wurzeln als Stiftungsuniversität ein hohes Maß an Selbstverantwortung. Heute ist sie eine der zehn drittmittelstärksten und drei größten Universitäten Deutschlands mit drei Exzellenzclustern in Medizin, Lebenswissenschaften sowie Geistes- und Sozialwissenschaften. Zusammen mit der Technischen Universität Darmstadt und der Universität Mainz ist sie Partner der länderübergreifenden strategischen Universitätsallianz Rhein-Main. Internet: www.uni-frankfurt.de

Herausgeberin: Die Präsidentin der Goethe-Universität Redaktion: Dr. Anne Hardy, Referentin für Wissenschaftskommunikation, Abteilung PR & Kommunikation, Theodor-W.-Adorno-Platz 1, 60323 Frankfurt am Main, Tel: (069) 798-13035, Fax: (069) 798-763 12531, kaltenborn@pvw.uni-frankfurt.de

Dr. Anne Hardy | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics