Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum künstlichen Muskel

08.12.2015

Hierarchische Selbstorganisation supramolekularer muskelartiger Fasern

In unseren Muskeln findet eine kollektive Bewegung „biomolekularer Motoren“ statt, um die makroskopische Bewegung zu erzeugen. Diesen Vorgang nachzuahmen, ist schon lange ein Ziel für Wissenschaft und Technik.


Elektronenmikroskopische Aufnahmen von supramolekularen muskelartigen Fasern im kontrahierten und im gedehnten Zustand.

(c) Wiley-VCH

Französische Wissenschaftler sind diese Ziel nun ein gutes Stück näher gekommen. In der Zeitschrift Angewandte Chemie stellen sie einen Ansatz für einen künstlichen Muskel vor, der auf einer hierarchischen Selbstorganisation supramolekularer muskelartiger Fasern basiert. Auf diese Weise konnten sie eine molekulare Bewegung bis auf die mikroskopische Skala verstärken.

Unser Muskelgewebe ist hierarchisch aufgebaut: Die kleinste funktionelle Einheit der Muskelfasern sind sogenannte Sarkomere. Diese sind aus dem Aktin-Filament und dem Myosin-Filament zusammengesetzt.

Das Myosin ist ähnlich gebaut wie ein Bündel winziger Golfschläger, deren „Köpfe“ in die dünneren Aktin-Filamente hineinragen. Eine koordinierte Bewegung Tausender dieser Köpfchen sorgt dafür, dass die Myosin-Fasern entlang der Aktin-Filamente gleiten – das Sarkomer kontrahiert. Eine Vielzahl solcher Sarkomer-Einheiten ist longitudinal zu Myofibrillen verbunden, die wiederum lateral zu Fasern gebündelt vorliegen.

Das Team von der Universität Straßburg und der Universität Paris Diderot um Nicolas Giuseppone hat dieses Bauprinzip jetzt nachgeahmt. Als Baueinheiten dienen Rotaxane, bewegliche Molekülsysteme aus einem stabförmigen Molekül, auf das ein großer molekularer Ring „aufgefädelt“ ist. Aus Rotaxanen lassen sich Dimere bilden, wenn ein Ring fest an ein Ende des Stabes gebunden ist.

Innerhalb des Dimers ist dann jeweils der Ring des einen Moleküls auf den Stab des anderen aufgefädelt. Solche Systeme wurden bereits als Basis für molekulare Schalter verwendet, denn durch eine Verschiebung der Ringe gegeneinander auf den Achsen sind sie zu teleskopartigen Kontraktionen und Extensionen in der Lage.

Die Forscher konstruierten ihre Rotaxan-Dimere so, dass es für die Ringe jeweils zwei „Einrastpositionen“ auf den Achsen gibt, in denen sie über Anziehungskräfte zu bestimmten Atomgruppen der Achse fixiert werden können. Durch einen Wechsel zwischen saurem und basischem Milieu kann kontrolliert zwischen den beiden Positionen hin und her geschaltet – und damit die Länge des Dimers variiert werden.

Erstmals gelang es den Wissenschaftlern nun, Tausende dieser Dimere zu einigen Mikrometer langen supramolekularen Fasern zu verknüpfen. Dazu verwendeten sie Verbindungsstücke, die jeweils an spezielle Bindestellen an den Enden der Dimere haften – über mehrfache Wasserstoff-Brückenbindungen analog der Basenpaarung in der DNA-Doppelhelix.

Die Verbindungsstücke ziehen sich zudem untereinander an (über π–π Stapelung und van der Waals-Kräfte) und sorgen so dafür, dass die einzelnen Fasern zu 10 bis 20 nm dicken Faserbündeln aggregieren. Elektronenmikroskopische Aufnahmen zeigen, dass sich diese im kontrahierten Zustand wie ein angespannter Muskel verdicken und im gedehnten Zustand eine längliche Form einnehmen.

Angewandte Chemie: Presseinfo 48/2015

Autor: Nicolas Giuseppone, Université de Strasbourg (France), http://www-ics.u-strasbg.fr/spip.php?article206

Permalink to the original article: http://dx.doi.org/10.1002/ange.201509813

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers
18.10.2019 | Universität zu Köln

nachricht Das Rezept für eine Fruchtfliege
18.10.2019 | Max-Planck-Institut für Biochemie

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste Ameise der Welt - Wüstenflitzer haben kurze Beine, aber eine perfekte Koordination

Silberameisen gelten als schnellste Ameisen der Welt - obwohl ihre Beine verhältnismäßig kurz sind. Daher haben Forschende der Universität Ulm den besonderen Laufstil dieses "Wüstenflitzers" auf einer Ameisen-Rennstrecke ergründet. Veröffentlicht wurde diese Entdeckung jüngst im „Journal of Experimental Biology“.

Sie geht auf Nahrungssuche, wenn andere Siesta halten: Die saharische Silberameise macht vor allem in der Mittagshitze der Sahara und in den Wüsten der...

Im Focus: Fraunhofer FHR zeigt kontaktlose, zerstörungsfreie Qualitätskontrolle von Kunststoffprodukten auf der K 2019

Auf der K 2019, der Weltleitmesse für die Kunststoff- und Kautschukindustrie vom 16.-23. Oktober in Düsseldorf, demonstriert das Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR das breite Anwendungsspektrum des von ihm entwickelten Millimeterwellen-Scanners SAMMI® im Kunststoffbereich. Im Rahmen des Messeauftritts führen die Wissenschaftler die vielseitigen Möglichkeiten der Millimeterwellentechnologie zur kontaktlosen, zerstörungsfreien Prüfung von Kunststoffprodukten vor.

Millimeterwellen sind in der Lage, nicht leitende, sogenannte dielektrische Materialien zu durchdringen. Damit eigen sie sich in besonderem Maße zum Einsatz in...

Im Focus: Solving the mystery of quantum light in thin layers

A very special kind of light is emitted by tungsten diselenide layers. The reason for this has been unclear. Now an explanation has been found at TU Wien (Vienna)

It is an exotic phenomenon that nobody was able to explain for years: when energy is supplied to a thin layer of the material tungsten diselenide, it begins to...

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

VR-/AR-Technologien aus der Nische holen

18.10.2019 | Veranstaltungen

Ein Marktplatz zur digitalen Transformation

18.10.2019 | Veranstaltungen

Wenn der Mensch auf Künstliche Intelligenz trifft

17.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Insekten teilen den gleichen Signalweg zur dreidimensionalen Entwicklung ihres Körpers

18.10.2019 | Biowissenschaften Chemie

Volle Wertschöpfungskette in der Mikrosystemtechnik – vom Chip bis zum Prototyp

18.10.2019 | Physik Astronomie

Innovative Datenanalyse von Fraunhofer Austria

18.10.2019 | Informationstechnologie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics