Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf dem Weg zum künstlichen Muskel

08.12.2015

Hierarchische Selbstorganisation supramolekularer muskelartiger Fasern

In unseren Muskeln findet eine kollektive Bewegung „biomolekularer Motoren“ statt, um die makroskopische Bewegung zu erzeugen. Diesen Vorgang nachzuahmen, ist schon lange ein Ziel für Wissenschaft und Technik.


Elektronenmikroskopische Aufnahmen von supramolekularen muskelartigen Fasern im kontrahierten und im gedehnten Zustand.

(c) Wiley-VCH

Französische Wissenschaftler sind diese Ziel nun ein gutes Stück näher gekommen. In der Zeitschrift Angewandte Chemie stellen sie einen Ansatz für einen künstlichen Muskel vor, der auf einer hierarchischen Selbstorganisation supramolekularer muskelartiger Fasern basiert. Auf diese Weise konnten sie eine molekulare Bewegung bis auf die mikroskopische Skala verstärken.

Unser Muskelgewebe ist hierarchisch aufgebaut: Die kleinste funktionelle Einheit der Muskelfasern sind sogenannte Sarkomere. Diese sind aus dem Aktin-Filament und dem Myosin-Filament zusammengesetzt.

Das Myosin ist ähnlich gebaut wie ein Bündel winziger Golfschläger, deren „Köpfe“ in die dünneren Aktin-Filamente hineinragen. Eine koordinierte Bewegung Tausender dieser Köpfchen sorgt dafür, dass die Myosin-Fasern entlang der Aktin-Filamente gleiten – das Sarkomer kontrahiert. Eine Vielzahl solcher Sarkomer-Einheiten ist longitudinal zu Myofibrillen verbunden, die wiederum lateral zu Fasern gebündelt vorliegen.

Das Team von der Universität Straßburg und der Universität Paris Diderot um Nicolas Giuseppone hat dieses Bauprinzip jetzt nachgeahmt. Als Baueinheiten dienen Rotaxane, bewegliche Molekülsysteme aus einem stabförmigen Molekül, auf das ein großer molekularer Ring „aufgefädelt“ ist. Aus Rotaxanen lassen sich Dimere bilden, wenn ein Ring fest an ein Ende des Stabes gebunden ist.

Innerhalb des Dimers ist dann jeweils der Ring des einen Moleküls auf den Stab des anderen aufgefädelt. Solche Systeme wurden bereits als Basis für molekulare Schalter verwendet, denn durch eine Verschiebung der Ringe gegeneinander auf den Achsen sind sie zu teleskopartigen Kontraktionen und Extensionen in der Lage.

Die Forscher konstruierten ihre Rotaxan-Dimere so, dass es für die Ringe jeweils zwei „Einrastpositionen“ auf den Achsen gibt, in denen sie über Anziehungskräfte zu bestimmten Atomgruppen der Achse fixiert werden können. Durch einen Wechsel zwischen saurem und basischem Milieu kann kontrolliert zwischen den beiden Positionen hin und her geschaltet – und damit die Länge des Dimers variiert werden.

Erstmals gelang es den Wissenschaftlern nun, Tausende dieser Dimere zu einigen Mikrometer langen supramolekularen Fasern zu verknüpfen. Dazu verwendeten sie Verbindungsstücke, die jeweils an spezielle Bindestellen an den Enden der Dimere haften – über mehrfache Wasserstoff-Brückenbindungen analog der Basenpaarung in der DNA-Doppelhelix.

Die Verbindungsstücke ziehen sich zudem untereinander an (über π–π Stapelung und van der Waals-Kräfte) und sorgen so dafür, dass die einzelnen Fasern zu 10 bis 20 nm dicken Faserbündeln aggregieren. Elektronenmikroskopische Aufnahmen zeigen, dass sich diese im kontrahierten Zustand wie ein angespannter Muskel verdicken und im gedehnten Zustand eine längliche Form einnehmen.

Angewandte Chemie: Presseinfo 48/2015

Autor: Nicolas Giuseppone, Université de Strasbourg (France), http://www-ics.u-strasbg.fr/spip.php?article206

Permalink to the original article: http://dx.doi.org/10.1002/ange.201509813

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen
29.05.2020 | Universität Heidelberg

nachricht Ein Hormon nach Pflanzenart
29.05.2020 | Universität Bielefeld

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartiges Covid-19-Schnelltestverfahren auf Basis innovativer DNA-Polymerasen entwickelt

Eine Forschungskooperation der Universität Konstanz unter Federführung von Professor Dr. Christof Hauck (Fachbereich Biologie) mit Beteiligung des Klinikum Konstanz, eines Konstanzer Diagnostiklabors und des Konstanzer Unternehmens myPOLS Biotec, einer Ausgründung aus der Arbeitsgruppe für Organische Chemie / Zelluläre Chemie der Universität Konstanz, hat ein neuartiges Covid-19-Schnelltestverfahren entwickelt. Dieser Test ermöglicht es, Ergebnisse in der Hälfte der Zeit zu ermitteln – im Vergleich zur klassischen Polymerase-Ketten-Reaktion (PCR).

Die frühe Identifikation von Patienten, die mit dem neuartigen Coronavirus (SARS-CoV-2) infiziert sind, ist zentrale Voraussetzung bei der globalen Bewältigung...

Im Focus: Textilherstellung für Weltraumantennen startet in die Industrialisierungsphase

Im Rahmen des EU-Projekts LEA (Large European Antenna) hat das Fraunhofer-Anwendungszentrum für Textile Faserkeramiken TFK in Münchberg gemeinsam mit den Unternehmen HPS GmbH und Iprotex GmbH & Co. KG ein reflektierendes Metallnetz für Weltraumantennen entwickelt, das ab August 2020 in die Produktion gehen wird.

Beim Stichwort Raumfahrt werden zunächst Assoziationen zu Forschungen auf Mond und Mars sowie zur Beobachtung ferner Galaxien geweckt. Für unseren Alltag sind...

Im Focus: Biotechnologie: Enzym setzt durch Licht neuartige Reaktion in Gang

In lebenden Zellen treiben Enzyme biochemische Stoffwechselprozesse an. Auch in der Biotechnologie sind sie als Katalysatoren gefragt, um zum Beispiel chemische Produkte wie Arzneimittel herzustellen. Forscher haben nun ein Enzym identifiziert, das durch die Beleuchtung mit blauem Licht katalytisch aktiv wird und eine Reaktion in Gang setzt, die in der Enzymatik bisher unbekannt war. Die Studie ist in „Nature Communications“ erschienen.

Enzyme – in jeder lebenden Zelle sind sie die zentralen Antreiber für biochemische Stoffwechselprozesse und machen dort Reaktionen möglich. Genau diese...

Im Focus: Biotechnology: Triggered by light, a novel way to switch on an enzyme

In living cells, enzymes drive biochemical metabolic processes enabling reactions to take place efficiently. It is this very ability which allows them to be used as catalysts in biotechnology, for example to create chemical products such as pharmaceutics. Researchers now identified an enzyme that, when illuminated with blue light, becomes catalytically active and initiates a reaction that was previously unknown in enzymatics. The study was published in "Nature Communications".

Enzymes: they are the central drivers for biochemical metabolic processes in every living cell, enabling reactions to take place efficiently. It is this very...

Im Focus: Innovative Sensornetze aus Satelliten

In Würzburg werden vier Kleinst-Satelliten auf ihren Start vorbereitet. Sie sollen sich in einer Formation bewegen und weltweit erstmals ihre dreidimensionale Anordnung im Orbit selbstständig kontrollieren.

Wenn ein Gegenstand wie der Planet Erde komplett ohne tote Winkel erfasst werden soll, muss man ihn aus verschiedenen Richtungen ansehen und die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gebäudewärme mit "grünem" Wasserstoff oder "grünem" Strom?

26.05.2020 | Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Wie sich Nervenzellen zum Abruf einer Erinnerung gezielt reaktivieren lassen

29.05.2020 | Biowissenschaften Chemie

Wald im Wandel

29.05.2020 | Agrar- Forstwissenschaften

Schwarzer Stickstoff: Bayreuther Forscher entdecken neues Hochdruck-Material und lösen ein Rätsel des Periodensystems

29.05.2020 | Materialwissenschaften

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics