Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Apothekerschrank unter der Haut

19.02.2016

Neues Verfahren macht Speichern und kontrolliertes Freisetzen von pharmazeutischen Stoffen im Körper möglich

Medikamente in genauer Dosierung lokal begrenzt im Körper anwenden – das ist nun dank einer Erfindung von Freiburger Wissenschaftlerinnen und Wissenschaftlern möglich. Eine Nachwuchsforschungsgruppe des Exzellenzclusters BrainLinks-BrainTools der Albert-Ludwigs-Universität um Dr. Maria Asplund und ihren Doktoranden Christian Böhler liefert die Grundlage für ein neues molekulares Speicherverfahren, das in absehbarer Zeit klinisch einsetzbar sein könnte.


In der grün markierten Speicherschicht können Medikamente eingelagert werden, die blau markierte Oberflächenschicht wird zu ihrer kontrollierten Freisetzung benötigt.

Quelle: Christian Böhler/Universität Freiburg

Den Mikrosystemtechnikern, Elektrotechnikern und Materialwissenschaftlern ist es gelungen, eine Verbindung aus organischen und anorganischen Stoffen zu erzeugen, die sich für eine kompakte Lagerung von pharmakologisch wirksamen Substanzen besonders gut eignet. Die Studie in Zusammenarbeit mit dem Team von der Professur für Nanotechnologie um Prof. Dr. Margit Zacharias vom Institut für Mikrosystemtechnik (IMTEK) der Universität Freiburg ist in dem Journal „Scientific Reports“ erschienen.

Ausgangspunkt für die Herstellung des Speichers war die Umwandlung eines Kunststoffs von einem flüssigen in einen festen Zustand. Zum ersten Mal konnten Forscherinnen und Forscher für einen solchen Prozess die so genannte Atomlagenabscheidung nutzen. Dabei werden auf einen Kunststoff Gase aufgetragen, die in seine Molekularstruktur eindringen und ihn von innen heraus festigen.

Als Grundstoff hat das Team das Polymer Polyethylenglycol verwendet. Es reagiert in dem Abscheidungsverfahren mit Zinkoxid zu einem organisch-anorganischen Hybridmaterial, dessen molekularer Aufbau für das Speichern von Medikamenten oder medikamentenähnlichen Stoffen geeignet ist. Zusätzlich ist die Wasserlöslichkeit dieses Materials für die Nutzung als Medikamenten-Träger von Vorteil, da es die darin aufbewahrten Stoffe leicht wieder freisetzt.

Um die Ausschüttung genau dosieren zu können, beispielsweise um sie in die Blutbahn zu befördern, ist das Polymer PEDOT nötig – ein Schwerpunkt in Asplunds Gruppe: „Vereinfacht betrachtet, funktioniert das Polymer wie ein Netz mit Löchern, die sich beim Anlegen von negativer Spannung öffnen und bei positiver Spannung schließen.

So können die gespeicherten Moleküle kontrolliert nach außen strömen“, erläutert Böhler. Es genügt, das Polymer zweifach als dünnen Film auf die Oberfläche des Hybridmaterials aufzubringen, um sicherzustellen, dass der Speicher ausreichend stabil ist und die Abgabe der eingelagerten Stoffe präzise kontrollieren kann.

Das Team vom IMTEK hat eine neue Technologie entwickelt, um den Speicher zu verbessern: Bisher waren ähnliche Speicher vergleichsweise weniger kompakt, hatten ein kleineres Lagervolumen, konnten keine unterschiedlich geladenen Moleküle aufbewahren und riefen zum Teil unerwünschte chemische Reaktionen hervor.

Die Forscher am IMTEK haben in Versuchen mit dem Stoff Fluoreszin gezeigt, dass der mehrschichtige Container ideale Eigenschaften für eine präzise Dosierung einer großen Bandbreite verwandter Moleküle besitzt, die über einen bestimmten Zeitraum an einem bestimmten Punkt ausgeschüttet werden sollen. In weiteren Experimenten möchte die Gruppe belegen, dass mehrere unterschiedliche Moleküle gleichzeitig oder in nebeneinanderliegenden Kammern speicherbar sind.

Nützlich wäre die Technologie vor allem für so genannte Lab-on-a-Chip-Verfahren, bei denen es um den Austausch und die Analyse von Substanzen auf kleinstem Raum geht. Sie könnte auch in der Krebstherapie verwendet werden, etwa um von einem Reservoir unter der Haut Medikamente direkt auf einen Tumor auszuschütten. Am IMTEK haben Forscher mit Tests an Zellkulturen bereits nachgewiesen, dass der menschliche Körper ein Implantat dieser Art komplikationsfrei aufnehmen kann.

Originalveröffentlichung:
C. Böhler, F. Güder, U. M. Kücükbayrak, M. Zacharias & M. Asplund (2016): A Simple Approach for Molecular Controlled Release based on Atomic Layer Deposition Hybridized Organic-Inorganic Layers, In: Scientific Reports 6, pp. 1-11.
http://www.nature.com/articles/srep19574

Kontakt:
Christian Böhler
Nachwuchsforschungsgruppe BioEPIC
Professur für Biomedizinische Mikrotechnik
Institut für Mikrosystemtechnik – IMTEK
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-67375
E-Mail: christian.boehler@imtek.de

Levin Sottru
Science Communicator
Exzellenzcluster BrainLinks-BrainTools
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-67721
E-Mail: sottru@blbt.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2016/pm.2016-02-19.22

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Immunologie - Rachenmandeln als Test-Labor
27.02.2020 | Ludwig-Maximilians-Universität München

nachricht Pestizide erhöhen Risiko für Tropenkrankheit Schistosomiasis / Belastete Gewässer fördern Zwischenwirt des Erregers
27.02.2020 | Helmholtz-Zentrum für Umweltforschung - UFZ

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wissenschaftler beleuchten aktuellen Stand der Anwendung des Maschinenlernens bei Forschung an aktiven Materialien

Verfahren des Maschinenlernens haben durch die Verfügbarkeit von enormen Datenmengen in den vergangenen Jahren einen großen Zuwachs an Anwendungen in vielen Gebieten erfahren: vom Klassifizieren von Objekten, über die Analyse von Zeitreihen bis hin zur Kontrolle von Computerspielen und Fahrzeugen. In einem aktuellen Review in der Zeitschrift „Nature Machine Intelligence“ beleuchten Autoren der Universitäten Leipzig und Göteborg den aktuellen Stand der Anwendung und Anwendungsmöglichkeiten des Maschinenlernens im Bereich der Forschung an aktiven Materialien.

Als aktive Materialien bezeichnet man Systeme, die durch die Umwandlung von Energie angetrieben werden. Bestes Beispiel für aktive Materialien sind biologische...

Im Focus: Computersimulationen stellen bildlich dar, wie DNA erkannt wird, um Zellen in Stammzellen umzuwandeln

Forscher des Hubrecht-Instituts (KNAW - Niederlande) und des Max-Planck-Instituts in Münster haben entdeckt, wie ein essentielles Protein bei der Umwandlung von normalen adulten humanen Zellen in Stammzellen zur Aktivierung der genomischen DNA beiträgt. Ihre Ergebnisse werden im „Biophysical Journal“ veröffentlicht.

Die Identität einer Zelle wird dadurch bestimmt, ob die DNA zu einem beliebigen Zeitpunkt „gelesen“ oder „nicht gelesen“ wird. Die Signalisierung in der Zelle,...

Im Focus: Bayreuther Hochdruck-Forscher entdecken vielversprechendes Material für Informationstechnologien

Forscher der Universität Bayreuth haben ein ungewöhnliches Material entdeckt: Bei einer Abkühlung auf zwei Grad Celsius ändern sich seine Kristallstruktur und seine elektronischen Eigenschaften abrupt und signifikant. In diesem neuen Zustand lassen sich die Abstände zwischen Eisenatomen mithilfe von Lichtstrahlen gezielt verändern. Daraus ergeben sich hochinteressante Anwendungsmöglichkeiten im Bereich der Informationstechnologien. In der Zeitschrift „Angewandte Chemie – International Edition“ stellen die Wissenschaftler ihre Entdeckung vor. Die neuen Erkenntnisse sind aus einer engen Zusammenarbeit mit Partnereinrichtungen in Augsburg, Dresden, Hamburg und Moskau hervorgegangen.

Bei dem ungewöhnlichen Material handelt es sich um ein Eisenoxid mit der Zusammensetzung Fe₅O₆. In einem Hochdrucklabor des Bayerischen Geoinstituts (BGI),...

Im Focus: Von China an den Südpol: Mit vereinten Kräften dem Rätsel der Neutrinomassen auf der Spur

Studie von Mainzer Physikern zeigt: Experimente der nächsten Generation versprechen Antworten auf eine der aktuellsten Fragen der Neutrinophysik

Eine der spannendsten Herausforderungen der modernen Physik ist die Ordnung oder Hierarchie der Neutrinomassen. Eine aktuelle Studie, an der Physiker des...

Im Focus: High-pressure scientists in Bayreuth discover promising material for information technology

Researchers at the University of Bayreuth have discovered an unusual material: When cooled down to two degrees Celsius, its crystal structure and electronic properties change abruptly and significantly. In this new state, the distances between iron atoms can be tailored with the help of light beams. This opens up intriguing possibilities for application in the field of information technology. The scientists have presented their discovery in the journal "Angewandte Chemie - International Edition". The new findings are the result of close cooperation with partnering facilities in Augsburg, Dresden, Hamburg, and Moscow.

The material is an unusual form of iron oxide with the formula Fe₅O₆. The researchers produced it at a pressure of 15 gigapascals in a high-pressure laboratory...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

CLIMATE2020 – Weltweite Online-Klimakonferenz vom 23. bis 30. März 2020

26.02.2020 | Veranstaltungen

Automatisierung im Dienst des Menschen

25.02.2020 | Veranstaltungen

Genomforschung für den Artenschutz - Internationale Fachtagung in Frankfurt

25.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Latest News

Bacteria loop-the-loop

27.02.2020 | Life Sciences

Project on microorganisms: Saci, the bio-factory

27.02.2020 | Life Sciences

New method converts carbon dioxide to methane at low temperatures

27.02.2020 | Life Sciences

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics