Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mit Antikörpern die Alzheimer-Krankheit erforschen

07.06.2010
Mit neuen gentechnologischen Methoden wollen Forscher der Technischen Universität Braunschweig und der École Polytechnique Fédérale de Lausanne, Schweiz, die Alzheimer-Erkrankung erforschen.

Ihr Ziel ist es, die molekulare Struktur derjenigen Eiweiße, die an der Erkrankung beteiligt sind, genauer als bisher zu untersuchen. Prof. Stefan Dübel, Leiter der Abteilung Biotechnologie des Braunschweiger Instituts für Biochemie und Biotechnologie und sein Team entwickeln dazu spezielle Antikörper. Sie kommen als molekulare Designer-Sonden zum Einsatz. In Lausanne werden sie im Laborversuch getestet. Das Projekt wird von der renommierten Alzheimer's Association gefördert.

Jeder menschliche oder tierische Körper verfügt über eine sehr hohe Zahl von unterschiedlichen Antikörpern. Von Natur aus für die Abwehr unbekannter Infektionen erschaffen, können sie beinahe jedes Molekül, das von außen in den Körper eindringt, binden und dadurch unschädlich machen. Wissenschaftler nutzen dieses natürliche Potenzial seit langem. Die Braunschweiger Forscher stellen Antikörper so her, dass diese ein einzelnes menschliches Eiweiß im Organismus aufspüren können, damit dessen Rolle im Organismus im Labor genau studiert werden kann. Dazu haben ein Verfahren perfektioniert, mit dem man Antikörper komplett ohne Versuchstiere im Reagenzglas entwickeln kann.

„Die Antikörper ermöglichen in diesem Projekt, bestimmte Proteine besser zu verstehen, die bei der Entstehung von Alzheimer eine Rolle spielen“, erläutert Prof. Dübel. „Sie funktionieren als Sonden, die es uns erlauben, kleinste Unterschiede in der molekularen Struktur dieser Eiweiße aufzuspüren und damit mehr über deren Rolle bei der Krankheitsentstehung zu erfahren.“

Eine Frage des „Faltenwurfs“

Proteine können eine sehr komplexe Struktur haben. Eiweiße gleicher chemischer Zusammensetzung können unterschiedliche räumliche Strukturen bilden, sich also unterschiedlich falten. Ein Protein, das im gesunden Organismus unschädlich ist, kann sich gleichsam wie ein Pullover „auf links“ umdrehen und dann die Erkrankung auslösen. Es ist also wichtig, die Faltung genau nachvollziehen zu können. Bisher war dies schwer, da in konventionellen Verfahren Antikörper zum Einsatz kamen, die in Versuchstieren erzeugt wurden. Dabei ließ sich nicht steuern, welche Faltung erkannt wurde. „Unsere Ansatz ist es, dass wir Antikörper-Sonden ausschließlich im Reagensglas aus Bakterien herstellen. Dabei lässt sich genau vorbestimmen, welche Version der Faltung des Eiweißes unsere Antikörper erkennen – und damit besser beobachten, wann und wie sich die Faltung verändert, wenn die Krankheit ausgelöst wird“, erläutert Prof. Dübel. Die Projektgruppe hofft, auf diese Weise mehr über die Entstehung und den Verlauf der Erkrankung zu erfahren. Damit würden neue Schritte in Richtung Diagnose und Therapie ermöglicht.

Im Rahmen des Projekts findet auch ein Austausch von Nachwuchswissenschaftlerinnen und -wissenschaftlern mit dem jeweiligen Partnerinstitut statt.

Weitere Informationen:
Technische Universität Braunschweig
Institut für Biochemie und Biotechnologie
Prof. Dr. Stefan Dübel
Spielmannstr. 7
38106 Braunschweig
Tel.: +49 531 531 391 5731
E-Mail: biotech@tu-braunschweig.de

Dr. Elisabeth Hoffmann | idw
Weitere Informationen:
http://www.tu-braunschweig.de/bbt
http://rzv054.rz.tu-bs.de/Biotech/index.html

Weitere Berichte zu: Antikörper Biochemie Biotechnologie Dübel Eiweiß Faltung Organismus Protein Versuchstier

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Magische kolloidale Cluster
11.12.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht Kupferverbindung als Recheneinheit in Quantencomputern
11.12.2018 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

Von „Frequenzkämmen“ spricht man bei speziellem Laserlicht, das sich optimal für chemische Sensoren eignet. Eine revolutionäre Technik der TU Wien erzeugt dieses Licht nun viel einfacher und robuster als bisher.

Ein gewöhnlicher Laser hat genau eine Farbe. Alle Photonen, die er abstrahlt, haben genau dieselbe Wellenlänge. Es gibt allerdings auch Laser, deren Licht...

Im Focus: Topological material switched off and on for the first time

Key advance for future topological transistors

Over the last decade, there has been much excitement about the discovery, recognised by the Nobel Prize in Physics only two years ago, that there are two types...

Im Focus: Neue Methode verpasst Mikroskop einen Auflösungsschub

Verspiegelte Objektträger ermöglichen jetzt deutlich schärfere Bilder / 20fach bessere Auflösung als ein gewöhnliches Lichtmikroskop - Zwei Forschungsteams der Universität Würzburg haben dem Hochleistungs-Lichtmikroskop einen Auflösungsschub verpasst. Dazu bedampften sie den Glasträger, auf dem das beobachtete Objekt liegt, mit maßgeschneiderten biokompatiblen Nanoschichten, die einen „Spiegeleffekt“ bewirken. Mit dieser einfachen Methode konnten sie die Bildauflösung signifikant erhöhen und einzelne Molekülkomplexe auflösen, die sich mit einem normalen Lichtmikroskop nicht abbilden lassen. Die Studie wurde in der NATURE Zeitschrift „Light: Science and Applications“ veröffentlicht.

Die Schärfe von Lichtmikroskopen ist aus physikalischen Gründen begrenzt: Strukturen, die näher beieinander liegen als 0,2 tausendstel Millimeter, verschwimmen...

Im Focus: Supercomputer ohne Abwärme

Konstanzer Physiker eröffnen die Möglichkeit, Supraleiter zur Informationsübertragung einzusetzen

Konventionell betrachtet sind Magnetismus und der widerstandsfreie Fluss elektrischen Stroms („Supraleitung“) konkurrierende Phänomene, die nicht zusammen in...

Im Focus: Drei Nervenzellen reichen, um eine Fliege zu steuern

Uns wirft so schnell nichts um. Eine Fruchtfliege kann dagegen schon ein kleiner Windstoß vom Kurs abbringen. Drei große Nervenzellen in jeder Hälfte des Fliegenhirns reichen jedoch aus, um die Fliege mit Hilfe visueller Signale wieder auf Kurs zu bringen.

Bewegen wir uns vorwärts, zieht die Umwelt in die entgegengesetzte Richtung an unseren Augen vorbei. Drehen wir uns, verschiebt sich das Bild der Umwelt im...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungen

Eine Norm für die Reinheitsbestimmung aller Medizinprodukte

10.12.2018 | Veranstaltungen

Fachforum über intelligente Datenanalyse

10.12.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neuartige Lasertechnik für chemische Sensoren in Mikrochip-Größe

11.12.2018 | Physik Astronomie

Besser Bohren – Neues Nanokomposit stabilisiert Bohrflüssigkeiten

11.12.2018 | Geowissenschaften

DFG unterstützt Kongresse und Tagungen - Januar und Februar 2019

11.12.2018 | Veranstaltungsnachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics