Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

An Parkinson beteiligtes Protein reist vom Hirn zum Magen

05.01.2017

Forscher des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) haben herausgefunden, dass ein bestimmtes Protein, das an Parkinson und weiteren neurologischen Störungen beteiligt ist, vom Gehirn zum Magen gelangen kann. Das Molekül mit dem Namen „Alpha-Synuclein“ folgt dabei einer speziellen Transportroute. Donato Di Monte und Kollegen berichten darüber in der Zeitschrift „Acta Neuropathologica“. Ihre Studie, die an Ratten durchgeführt wurde, wirft ein neues Licht auf Vorgänge, die dem Krankheitsverlauf beim Menschen zugrunde liegen könnten.

Alpha-Synuclein kommt im Nervensystem natürlicherweise vor und spielt eine wichtige Rolle für die Funktion der Synapsen. So werden die Verbindungsstellen genannt, über die Nervenzellen miteinander kommunizieren. Doch bei Parkinson, Lewy-Körperchen-Demenz und anderen neurodegenerativen Erkrankungen, die als „Synucleinopathien“ bezeichnet werden, sammelt sich das Protein in Nervenzellen an und bildet abnorme Aggregate.


DZNE-Forscher haben bei Laboruntersuchungen herausgefunden, dass das an der Parkinson-Erkrankung beteiligte Protein „Alpha-Synuclein“ vom Gehirn zum Magen gelangen kann. Dabei nutzt es den „Nervus Vagus“ als Transportweg. Diese Aufnahme zeigt Fasern des Nervus Vagus einer Ratte (grün). Eine dieser Fasern (orange-rot, markiert mit weißen Pfeilen) enthält Alpha-Synuclein auf dem Weg zum Magen. Quelle: DZNE/Ayse Ulusoy

Im Laufe der Erkrankung werden bestimmte Bereiche des Gehirns immer weiter von dieser Entwicklung erfasst. Wenig weiß man über die Mechanismen und Wege, die an dieser Verbreitung der Krankheitsmerkmale beteiligt sind. Untersuchungen legen jedoch nahe, dass Alpha-Synuclein – oder eine krankhafte Version des Proteins – von einer Nervenzelle zur anderen gelangen kann und sich somit über miteinander verbundene Regionen des Nervensystems verteilt.

Schäden durch Alpha-Synuclein wurden auch im peripheren Nervensystem beobachtet – etwa in Nervenzellen der Magenwand. Bei einigen Parkinson-Patienten wurden solche Schäden im frühen Krankheitsstadium festgestellt. „Auf Grund dieser bemerkenswerten Beobachtungen wurde die Vermutung aufgestellt, dass der pathologische Prozess, der der Parkinson‘schen Krankheit zugrunde liegt, tatsächlich im Magen-Darm-Trakt beginnt und von dort auf das Gehirn übergeht“, so Professor Di Monte.

„Unser Ansatz war es nun, diese Fernübertragung von Alpha-Synuclein aus der entgegengesetzten Perspektive zu betrachten. Wir haben untersucht, ob die Möglichkeit besteht, dass Alpha-Synuclein vom Gehirn zum Verdauungssystem reisen kann.“

Versuchssituation

Di Monte und seine Kollegen testeten diese Hypothese in einer Laborstudie. Dazu schleusten sie per maßgeschneidertem Virus-Teilchen den Bauplan der menschlichen Variante von Alpha-Synuclein gezielt in Nervenzellen des Mittelhirns von Ratten. Infolgedessen begannen diese Zellen große Mengen des fremden Proteins herzustellen. „Einige Formen von Parkinson gehen mit einer Überproduktion von Alpha-Synuclein einher. Unser Modell ahmt daher Geschehnisse nach, die für den Menschen wahrscheinlich relevant sind“, so Di Monte.

Gewebeanalysen von Forscherkollegen der US-amerikanischen Purdue University ergaben, dass das Protein vom Mittelhirn bis in Nervenendigungen in der Magenwand vordringen konnte. Weitere Untersuchungen im Labor von Di Monte konnten den genauen Weg nachzeichnen: Das Protein gelangte zunächst vom Mittelhirn zur „Medulla oblongata“, dem untersten Bereich des Hirnstamms.

In der Medulla oblongata, wurde es innerhalb von Nervenzellen nachgewiesen, deren lange Fortsätze den „Nervus Vagus“ bilden. Dieses Nervenbündel verbindet das Gehirn mit einer Vielzahl innerer Organe. Das menschliche Alpha-Synuclein folgte diesen Nervenleitungen bis zum Magen, den es etwa sechs Monate nach Herstellung im Mittelhirn erreichte. Das Molekül sammelte sich in Nervenendigungen in der Magenwand an. Dort fanden die Forscher auch Anzeichen neuronaler Schäden.

Vom Hirn zum Magen auf speziellen Wegen

„Unsere Studie zeigt, dass Alpha-Synuclein ziemlich weit durch den Körper reisen kann. Es ist dazu fähig, von einer Nervenzelle zur anderen zu gelangen und lange Nervenfasern als Transportwege zu nutzen“, sagt Di Monte. „Unsere Ergebnisse schließen nicht aus, dass Erkrankungen, die mit Alpha-Synuclein assoziiert sind, im Verdauungssystem entstehen können. Dies kann bei einigen Patienten der Fall sein. Unsere Ergebnisse weisen jedoch darauf hin, dass krankhaftes Alpha-Synuclein, das außerhalb des Gehirns nachgewiesen wird, nicht unbedingt den Ausgangspunkt der Erkrankung markiert.“

Die Studie zeigt zudem, dass Alpha-Synuclein bei seiner Reise entlang des Nervus Vagus eine bestimmte Route bevorzugt. Der Nervus Vagus besteht nämlich aus zwei Arten von Nervenfasern: 10 bis 20 Prozent der Fasern sind „efferent“, die restlichen 80 bis 90 Prozent sind „afferent“. Efferente Fasern sind Fortsätze von Nervenzellen, die die Magen-Darm-Bewegung steuern. Afferente Fasern hingegen übermitteln Sinneseindrücke vom Verdauungssystem zum Gehirn. Die Forscher stellten fest: Für seine Reise vom Gehirn zum Magen nutzte Alpha-Synuclein nur die relativ seltenen efferenten Fasern.

„Das ist recht bemerkenswert“, sagt Di Monte. „Es zeigt, dass die Übertragung von Alpha-Synuclein nicht nur eine Frage anatomischer Verbindungen ist. Bestimmte Nervenzellen scheinen eine besondere Neigung zu haben, Alpha-Synuclein aufzunehmen, zu transportieren und anzuhäufen. Wir kennen die genauen Mechanismen nicht, die diesem selektiven Verhalten der Nervenzellen zugrunde liegen. Es ist jedoch wahrscheinlich, dass diese Mechanismen erklären könnten, wieso bestimmte Gruppen von Nervenzellen und bestimmte Hirnregionen besonders anfällig sind für die Alpha-Synuclein-Pathologie. Das wollen wir in weiteren Studien untersuchen.“

Förderung
Diese Studie wurde von der Paul Foundation, den Centers of Excellence in Neurodegeneration Research (CoEN) und dem National Institute of Diabetes and Digestive and Kidney Diseases unterstützt.

Originalveröffentlichung
„Brain-to-stomach transfer of α-synuclein via vagal preganglionic projections”, Ayse Ulusoy, Robert J. Phillips, Michael Helwig, Michael Klinkenberg, Terry L. Powley, Donato A. Di Monte, Acta Neuropathologica, DOI: http://dx.doi.org/10.1007/s00401-016-1661-y

Das Deutsche Zentrum für Neurodegenerative Erkrankungen e. V. (DZNE) erforscht die Ursachen von Erkrankungen des Nervensystems und entwickelt Strategien zur Prävention, Therapie und Pflege. Es ist Mitglied der Helmholtz-Gemeinschaft Deutscher Forschungszentren mit Standorten in Berlin, Bonn, Dresden, Göttingen, Magdeburg, München, Rostock/Greifswald, Tübingen und Witten. Das DZNE kooperiert eng mit Universitäten, deren Kliniken und außeruniversitären Forschungseinrichtungen.
Web: www.dzne.de | Twitter: @dzne_de | Facebook: www.dzne.de/facebook

Weitere Informationen:

https://www.dzne.de/ueber-uns/presse/meldungen/2017/pressemitteilung-nr-1.html

Dr. Marcus Neitzert | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Aus-Schalter für Nebenwirkungen
22.06.2018 | Max-Planck-Institut für Biochemie

nachricht Ein Fall von „Kiss and Tell“: Chromosomales Kissing wird fassbarer
22.06.2018 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

Noch mehr Reichweite oder noch mehr Nutzlast - das wünschen sich Fluggesellschaften für ihre Flugzeuge. Wegen ihrer hohen spezifischen Steifigkeiten und Festigkeiten kommen daher zunehmend leichte Faser-Kunststoff-Verbunde zum Einsatz. Bei Rümpfen oder Tragflächen sind permanent Innovationen in diese Richtung zu beobachten. Um dieses Innovationsfeld auch für Flugzeugräder zu erschließen, hat das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF jetzt ein neues EU-Forschungsvorhaben gestartet. Ziel ist die Entwicklung eines ersten CFK-Bugrads für einen Airbus A320. Dabei wollen die Forscher ein Leichtbaupotential von bis zu 40 Prozent aufzeigen.

Faser-Kunststoff-Verbunde sind in der Luftfahrt bei zahlreichen Bauteilen bereits das Material der Wahl. So liegt beim Airbus A380 der Anteil an...

Im Focus: IT-Sicherheit beim autonomen Fahren

FH St. Pölten entwickelt neue Methode für sicheren Informationsaustausch zwischen Fahrzeugen mittels Funkdaten

Neue technische Errungenschaften wie das Internet der Dinge oder die direkte drahtlose Kommunikation zwischen Objekten erhöhen den Bedarf an effizienter...

Im Focus: Innovative Handprothesensteuerung besteht Alltagstest

Selbstlernende Steuerung für Handprothesen entwickelt. Neues Verfahren lässt Patienten natürlichere Bewegungen gleichzeitig in zwei Achsen durchführen. Forscher der Universitätsmedizin Göttingen (UMG) veröffentlichen Studie im Wissenschaftsmagazin „Science Robotics“ vom 20. Juni 2018.

Motorisierte Handprothesen sind mittlerweile Stand der Technik bei der Versorgung von Amputationen an der oberen Extremität. Bislang erlauben sie allerdings...

Im Focus: Temperaturgesteuerte Faser-Lichtquelle mit flüssigem Kern

Die moderne medizinische Bildgebung und neue spektroskopische Verfahren benötigen faserbasierte Lichtquellen, die breitbandiges Laserlicht im nahen und mittleren Infrarotbereich erzeugen. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien Jena (Leibniz-IPHT) zeigen in einer aktuellen Veröffentlichung im renommierten Fachblatt Optica, dass sie die optischen Eigenschaften flüssigkeitsgefüllter Fasern und damit die Bandbreite des Laserlichts gezielt über die Umgebungstemperatur steuern können.

Das Besondere an den untersuchten Fasern ist ihr Kern. Er ist mit Kohlenstoffdisulfid gefüllt - einer flüssigen chemischen Verbindung mit hoher optischer...

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leben im Plastikzeitalter: Wie ist ein nachhaltiger Umgang mit Plastik möglich?

21.06.2018 | Veranstaltungen

Kongress BIO-raffiniert X – Neue Wege in der Nutzung biogener Rohstoffe?

21.06.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen im August 2018

20.06.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Leichter abheben: Fraunhofer LBF entwickelt Flugzeugrad aus Faser-Kunststoff-Verbund

22.06.2018 | Materialwissenschaften

Lernen und gleichzeitig Gutes tun? Baufritz macht‘s möglich!

22.06.2018 | Unternehmensmeldung

GFOS und skip Institut entwickeln gemeinsam Prototyp für Augmented Reality App für die Produktion

22.06.2018 | Unternehmensmeldung

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics