Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alzheimer-Auslöser „reift“ vom harmlosen Eiweiß zum Nervenzellkiller

06.03.2014

Wissenschaftler der interdisziplinären „Projektgruppe Alzheimer-Forschung Ulm“ haben nachgewiesen, dass mit dem Fortschreiten der Krankheit nicht nur die Menge des abgelagerten Beta-Amyloid zunimmt, sondern dass die Eiweißaggregate einen mehrstufigen „Reifungsprozess“ durchlaufen.

Bestimmte Reifungsschritte sind dabei charakterisiert durch das Auftreten spezifischer modifizierter Amyloidpeptide, von denen bekannt ist, dass sie die Interaktionsfreudigkeit gegenüber anderen Proteinen erhöhen. Das heißt, die Substanz wird immer klebriger und neigt verstärkt zur Verklumpung, was sie noch toxischer auf die Nervenzellen im Gehirn wirken lässt.


Antikörper gegen Beta-Amyloid machen die Plaques im Gehirngewebe durch die Färbung gut sichtbar (Bild oben links), Antikörper gegen abnormales tau-Protein zeigen dagegen typische Veränderung

Abbildung: Dietmar Thal

Sie sind klebrig und verklumpen leicht. Nervenzellen im Gehirn, die damit befallen sind, geben meist irgendwann ihren Geist auf. Die Rede ist von einer ganz speziellen Eiweißverbindung, einem Peptid namens Beta-Amyloid, das an der Entstehung der Alzheimer Krankheit beteiligt ist.

Oft bleibt die Krankheit über Jahre im Verborgenen, bis sie schließlich als Demenz hervorbricht. Die Symptome: Verwirrtheit, Orientierungslosigkeit und Vergesslichkeit – bis hin zur völligen Auflösung von Gedächtnis und Persönlichkeit.

Wissenschaftler der Universität Ulm haben nun nachgewiesen, dass mit dem Fortschreiten der Krankheit nicht nur die Menge des abgelagerten Beta-Amyloid zunimmt, sondern dass die Eiweißaggregate einen mehrstufigen „Reifungsprozess“ durchlaufen.

Bestimmte Reifungsschritte sind dabei charakterisiert durch das Auftreten spezifischer modifizierter Amyloidpeptide, von denen bekannt ist, dass sie die Interaktionsfreudigkeit gegenüber anderen Proteinen erhöhen.

„Das heißt, die Substanz wird immer klebriger und neigt verstärkt zur Verklumpung, was sie noch toxischer auf die Nervenzellen im Gehirn wirken lässt“, erklärt Professor Dietmar Thal. Der Leiter der Sektion Neuropathologie der Universität Ulm ist Projektleiter der nun in „Brain“ veröffentlichten Studie über den Zusammenhang zwischen biochemischen und klinischen Stadien bei Alzheimer. 

Zwar geht man mittlerweile davon aus, dass sich bereits weniger stark aggregierte Formen dieses Peptids (Beta-Amyloid-Oligomere) toxisch auf empfindliche Hirnstrukturen wie Synapsen auswirken. „Die klinischen Symptome der Alzheimer-Demenz treten allerdings meist erst dann auf, wenn sich im Gehirn bereits pathologische Veränderungen durch abgelagerte Fibrillen und Plaques zeigen“, so Professorin Christine von Arnim. Die Oberärztin in der Klinik für Neurologie am Universitätsklinikum Ulm gehört neben dem Neuropathologen Dietmar Thal und dem Biochemiker Professor Marcus Fändrich zu den Gründern der Ende letzten Jahres ins Leben gerufenen „Projektgruppe Alzheimer-Forschung Ulm“.

Das interdisziplinäre Team aus Wissenschaftlern der Ulmer Universität und des Universitätsklinikums Ulm konnte nun anhand zahlreicher Gewebeproben zeigen, dass sich im Gehirn von verstorbenen Alzheimer-Kranken mit Demenzsymptomen eine spezielle phosphorylierte Form des Peptids nachweisen lässt, die die Bildung von Beta-Amyloid-Oligomeren fördert. Diese Makromoleküle begünstigen die Fibrillenbildung, indem sie als „Keime“ die Zusammenlagerung der Proteine zu faserartigen Molekülkomplexen befördern, wie die Kooperationspartner von der Universität Bonn bereits früher zeigen konnten.

Hirngewebe von Alzheimer-Kranken im vorklinischen – also symptomfreien – Stadium wies kein phosphoryliertes Amyloid aber in vielen Fällen eine andere verkürzte, so genannte Pyroglutamat-modifizierte Amyloidvariante auf. Von dieser Variante ist bekannt, dass auch sie die Aggregationsneigung der Fibrillen erhöht. „Man kann sich das als eine Art Reifungsprozess vorstellen, über den das Beta-Amyloid immer komplexere Strukturen annimmt, die den Neuronen immer stärker zusetzen“, veranschaulicht der Amyloid-Experte Fändrich. 

Die Alzheimer-Forscher haben ihre Studienergebnisse schließlich in ein hierarchisches Krankheitsmodell mit drei biochemischen Stadien überführt: im ersten biochemischen Stadium lassen sich ausschließlich Beta-Amyloid-Ablagerungen nachweisen. In Stadium zwei dagegen findet sich zusätzlich die modifizierte Variante, die durch Verkürzungen gekennzeichnet ist und im dritten Stadium tritt darüber hinaus die phosphorylierte Variante des Beta-Amyloids hinzu.

„Alle klinischen Alzheimer-Fälle mit erkennbaren Symptomen waren biochemisch dem Stadium 3 zuzurechnen, die durch das Auftreten von phosphoriliertem Beta-Amyloid gekennzeichnet ist“, erläutert Erstautor Dr. Ajeet Rijal Upadhaya. „Es gibt also einen deutlichen Zusammenhang zwischen der Ausprägung der klinischen Symptomatik und der durch die Peptid-Modifikationen verstärkten `Reifung´ der Beta-Amyloid-Strukturen von löslichen Peptidmolekülen und Oligomeren hin zu Fibrillen und Plaques“, so der wissenschaftlicher Mitarbeiter in der Sektion Neuropathologie. 

Die Ulmer Alzheimer-Forschungsgruppe konnte also in Zusammenarbeit mit Wissenschaftlern der Universität Bonn (Prof. Jochen Walter, Dr. Sathish Kumar) und der japanischen Gunma University School of Health Sciences in Maebashi (Prof. Haruyashu Yamaguchi) zeigen, dass durch die Einlagerung modifizierter Amyloid-Proteine die Verklumpungsneigung löslicher und unlöslicher Beta-Amyloid-Peptide verstärkt wird. Das Projekt wurde von der Alzheimer Forschung Initiative (AFI #10810) unterstützt. „Wir hoffen nun, dass sich mit unseren Befunden bessere Ansatzpunkte für neue Therapien finden lassen. Denn noch immer gibt es keine wirksamen Medikamente, mit denen sich Alzheimer wirklich heilen lässt“, so das Ulmer Forscherteam.

Zur Studie:
Untersucht wurden dafür die Gehirne von 21 Alzheimer-Patienten mit Demenzsymptomen sowie von 33 symptomfreien präklinischen Alzheimer-Fällen. Zur Kontrolle wurden die Daten verglichen mit den Ergebnissen aus einer Kontrollgruppe ohne Alzheimer. Die Gewebeproben stammen allesamt aus der Gewebesammlung des Neuropathologischen Labors der Universität Ulm, wo sie nach Einverständnis der Ethikkommission der Universität der Forschung zur Verfügung stehen. Nach der Autopsie wurden die Gehirne in Formaldehyd fixiert, danach in Paraffin oder in Polyethylenglycol für die Gewebeschnitte eingebettet und histopathologisch untersucht, um die Beta-Amyloid Verteilung quantitativ zu ermitteln. Für die biochemischen Untersuchungen zum Nachweis von modifizierten Varianten wurden Western-Blot Analysen an Hirnlysaten und Immunpräzipitationsschritte durchgeführt. Untersucht wurden unterschiedlichste Formen von Beta-Amyloid-Aggregaten: wasserlösliche, in Dispersion befindliche, Membran-gebundene und Plaque-assoziierte Aggregate.

Verantwortlich: Andrea Weber-Tuckermann

Weitere Informationen:
Prof. Dr. Dietmar Thal, Tel.: 08221 / 96-2163; Email: dietmar.thal@uni-ulm.de

Prof. Dr. Christine von Arnim, Tel.: 0731 / 50000 – 63011; Email: christine.arnim@uni-ulm.de
Prof. Dr. Marcus Fändrich, Tel.: 0731 / 50 – 32750; Email: marcus.faendrich@uni-ulm.de

Weitere Informationen:

http://brain.oxfordjournals.org/content/137/3/887.abstract?sid=51d685e6-5be0-4d2...

Andrea Weber-Tuckermann | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern
22.11.2019 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Austernsterben: Amerikanische Pantoffelschnecke ist unschuldig
22.11.2019 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

Nicht nur in Muskelzellen spielen sie die Hauptrolle: Die Aktinfilamente sind eines der häufigsten Proteine in allen Säugetierzellen. Die fadenförmigen Strukturen bilden einen wichtigen Teil des Zellskeletts und -bewegungsapparats. Zellbiologinnen und -biologen der Universität Freiburg zeigen nun in Zellkulturen, wie Rezeptorproteine in der Membran dieser Zellen Signale von außen an Aktinmoleküle im Kern weiterleiten, die daraufhin Fäden bilden.

Das Team um Pharmakologe Prof. Dr. Robert Grosse steuert in einer Studie den Auf- und Abbau der Aktinfilamente im Zellkern mit physiologischen Botenstoffen und...

Im Focus: Neuartiges Antibiotikum gegen Problemkeime in Sicht

Internationales Forscherteam mit Beteiligung der Universität Gießen entdeckt neuen Wirkstoff gegen gramnegative Bakterien – Darobactin attackiert die Erreger an einem bislang unbekannten Wirkort

Immer mehr bakterielle Erreger von Infektionskrankheiten entwickeln Resistenzen gegen die marktüblichen Antibiotika. Typische Krankenhauskeime wie Escherichia...

Im Focus: Machine learning microscope adapts lighting to improve diagnosis

Prototype microscope teaches itself the best illumination settings for diagnosing malaria

Engineers at Duke University have developed a microscope that adapts its lighting angles, colors and patterns while teaching itself the optimal...

Im Focus: Kleine Teilchen, große Wirkung: Wie Nanoteilchen aus Graphen die Auflösung von Mikroskopen verbessern

Konventionelle Lichtmikroskope können Strukturen nicht mehr abbilden, wenn diese einen Abstand haben, der kleiner als etwa die Lichtwellenlänge ist. Mit „Super-resolution Microscopy“, entwickelt seit den 80er Jahren, kann man diese Einschränkung jedoch umgehen, indem fluoreszierende Materialien eingesetzt werden. Wissenschaftlerinnen und Wissenschaftler am Max-Planck-Institut für Polymerforschung haben nun entdeckt, dass aus Graphen bestehende Nano-Moleküle genutzt werden können, um diese Mikroskopie-Technik zu verbessern. Diese Nano-Moleküle bieten eine Reihe essentieller Vorteile gegenüber den bisher verwendeten Materialien, die die Mikroskopie-Technik noch vielfältiger einsetzbar machen.

Mikroskopie ist eine wichtige Untersuchungsmethode in der Physik, Biologie, Medizin und vielen anderen Wissenschaften. Sie hat jedoch einen Nachteil: Ihre...

Im Focus: Small particles, big effects: How graphene nanoparticles improve the resolution of microscopes

Conventional light microscopes cannot distinguish structures when they are separated by a distance smaller than, roughly, the wavelength of light. Superresolution microscopy, developed since the 1980s, lifts this limitation, using fluorescent moieties. Scientists at the Max Planck Institute for Polymer Research have now discovered that graphene nano-molecules can be used to improve this microscopy technique. These graphene nano-molecules offer a number of substantial advantages over the materials previously used, making superresolution microscopy even more versatile.

Microscopy is an important investigation method, in physics, biology, medicine, and many other sciences. However, it has one disadvantage: its resolution is...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage 2020: „Mach es einfach!“

18.11.2019 | Veranstaltungen

Humanoide Roboter in Aktion erleben

18.11.2019 | Veranstaltungen

1. Internationale Konferenz zu Agrophotovoltaik im August 2020

15.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der Gewinner ist… Vorankündigung zum 11. Corporate Health Award

22.11.2019 | Förderungen Preise

Erste Liga der Automobilzulieferer

22.11.2019 | Förderungen Preise

Forschende entdecken, wie äußere Reize den Auf- und Abbau des Skeletts im Kern von Säugetierzellen steuern

22.11.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics