Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Alles relativ: Wie Fliegen die Welt sehen

10.01.2020

Unser Sehsystem ist extrem gut im Erkennen von Objekten unter den verschiedensten Bedingungen. Wir nehmen beispielsweise Fußgänger am Straßenrand bei strahlendem Sonnenschein ebenso wie an bewölkten Tagen wahr und können ihre Bewegungsrichtung vor einer Hauswand genauso wie vor dem Getümmel an einer Bushaltestelle erkennen. Was Auge und Gehirn scheinbar mit Leichtigkeit tun, ist eine große Herausforderung für automatisierte Systeme mit computergestützter Bildverarbeitung. Max-Planck Neurobiologen haben nun herausgefunden, wie das Fliegenhirn dieses Problem angeht: Die Nervenzellen verändern ihre Empfindlichkeit konstant in Abhängigkeit vom aktuellen Umgebungskontrast.

Ein Fliegenhirn besitzt rund 100.000 Nervenzellen, wovon zirka 25.000 Zellen am Bewegungssehen beteiligt sind. Im Vergleich zu Wirbeltiergehirnen ist das überschaubar, doch trotzdem gibt es viele Parallelen zwischen dem Sehsystem von Fliegen und zum Beispiel Mäusen. Der Vorteil der Fliege ist jedoch, dass Neurobiologen das System Zelle für Zelle entschlüsseln können.


Das Fliegenhirn verwendet einen einfachen, aber effektiven Algorithmus, um Bewegungen unter verschiedenen Kontrastbedingungen zu berechnen.

(c) MPI für Neurobiologie / Kuhl

Doch worauf reagieren einzelne Nervenzellen im Fliegenhirn? Um das zu untersuchen haben Forscher aus der Abteilung von Alexander Borst am Max-Planck-Institut für Neurobiologie ein Panoramakino für Fruchtfliegen gebaut.

Während hier "Filme" laufen, nehmen die Neurobiologen die Aktivität der Nervenzellen im Gehirn der Fliegen auf. Dank solcher Untersuchungen ist das Bewegungssehen von Fliegen heute einer der am besten verstandenen Nervenzellschaltkreise auf zellulärer Ebene.

Trotzdem versagten Computermodelle des Fliegen-Bewegungssehens bisher, sobald die Forscher den Modellen statt künstlicher Streifenmuster fotorealistische Bilder von natürlichen Umgebungen zeigten.

Natürliche Bilder bestehen aus vielen unterschiedlichen Objekten, die in Helligkeit und Kontrast stark variieren können. Diese natürliche Komplexität stellt Computermodelle vor große Herausforderungen.

Um besser zu verstehen, wie das Fliegenhirn es dem Tier ermöglicht sich auch in komplexen natürlichen Umgebungen zurechtzufinden, haben Michael Drews und Aljoscha Leonhardt ein Großaufgebot moderner neurobiologischer Methoden eingesetzt: Von der Elektrophysiologie über bildgebende Verfahren und Verhaltensstudien bis hin zur Modellanalyse mit Künstlicher Intelligenz.

Informationsverarbeitung ist Teamwork

In einem wichtigen Teil ihrer Untersuchungen ließen die Forscher unterschiedlich kontrastreiche Landschaftsbilder um die Fliegen rotieren. Dank eines angeborenen Verhaltens reagieren die Fliegen auf den optischen Fluss der Bilder mit einer Drehbewegung in entsprechender Richtung und Geschwindigkeit.

„Die Fliegen haben uns durch ihr Drehverhalten daher direkt gezeigt, ob sie die Bewegung und Geschwindigkeit der Umgebungsbilder noch auflösen können“, erklärt Drews. „So konnten wir untersuchen, welche Nervenzellen wie auf die verschiedenen Kontrastverhältnisse reagieren.“

Die Untersuchungen haben gezeigt, dass das Fliegenhirn gleich zu Beginn der Lichtreiz-Verarbeitung eine Feedbackschleife zum Kontrastvergleich eingebaut hat. Nimmt eine Nervenzelle einen hohen Kontrast wahr, vergleicht sie diesen Wert zunächst mit dem ihrer Nachbarzellen. Ist der Umgebungskontrast im Vergleich gering, antwortet die Nervenzelle stark. Ist der Umgebungskontrast dagegen größer, so schwächt die Zelle ihre Antwort ab.

Kontrast wird im Sehsystem der Fliege also immer nur relativ zum Umgebungskontrast kodiert. „Durch diesen Mechanismus passt das Sehsystem seine Kontrastempfindlichkeit ständig an den gegebenen Umgebungskontrast an,“ erklärt Leonhardt. „So entsteht eine robuste Informationsübertragung, die unter beinahe allen Bedingungen gleich gut funktioniert.“

Künstliche Intelligenz lernt Sehen

Um die Funktion des neuen Schaltkreises zu überprüfen, haben die Forscher das Sehsystem im Computermodell nachgebaut – einmal mit und einmal ohne die Feedbackschleife.

Tatsächlich konnten künstliche neuronale Netzwerke, die mit dem erweiterten Schaltkreis "Sehen" gelernt haben, deutlich besser reagieren, als mit dem einfachen Schaltkreis trainierte Netzwerke. Entscheidend dabei: Der erweiterte Schaltkreis kommt auch mit natürlichen Umgebungsbildern gut klar.

Die Wissenschaftler haben somit in der Fliege einen sehr einfachen aber effektiven Algorithmus gefunden, der Bewegungen auch bei variierenden Kontrastverhältnissen berechnen kann. Ähnliche Verschaltungen werden zu Beispiel auch im Gehirn von Mäusen vermutet. So kann die Fliege uns helfen, die Gehirne anderer Tiere besser zu verstehen oder künstliche und computergestützte Sehsysteme vielleicht noch effizienter zu machen.

KONTAKT
Dr. Stefanie Merker
Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Neurobiologie
Am Klopferspitz 18
82152 Planegg-Martinsried
E-Mail: merker@neuro.mpg.de
Tel.: 089 8578 3514

Originalpublikation:

Michael S. Drews*, Aljoscha Leonhardt*, Nadezhda Pirogova, Florian G. Richter, Anna Schuetzenberger, Lukas Braun, Etienne Serbe, Alexander Borst (*equal contribution)
Dynamic signal compression for robust motion vision in flies
Current Biology, online am 09 Januar 2019
DOI: 0.1016/j.cub.2019.10.035

Weitere Informationen:

http://www.neuro.mpg.de/news/2020-01-borst/de - Mitteilung mit Hintergrundinformationen zum Thema.
http://www.neuro.mpg.de/borst/de - Webseite der Abteilung von Prof. Alexander Borst

Dr. Stefanie Merker | Max-Planck-Institut für Neurobiologie

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Proteinfunktionen - Ein Lichtblitz genügt
21.01.2020 | Ludwig-Maximilians-Universität München

nachricht DKMS-Studie zum Erfolg von Stammzelltransplantationen
21.01.2020 | DKMS - Medizin & Wissenschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: DKMS-Studie zum Erfolg von Stammzelltransplantationen

Den möglichen Einfluss von Killerzell-Immunoglobulin-ähnlichen Rezeptoren (KIR) auf den Erfolg von Stammzelltransplantationen hat jetzt ein interdisziplinäres Forscherteam der DKMS untersucht. Das Ergebnis: Bei 2222 Patient-Spender-Paaren mit bestimmten KIR-HLA-Kombinationen konnten die Wissenschaftler keine signifikanten Auswirkungen feststellen. Jetzt wollen die Forscher weitere KIR-HLA-Kombinationen in den Blick nehmen – denn dieser Forschungsansatz könnte künftig Leben retten.

Die DKMS ist bekannt als Stammzellspenderdatei, die zum Ziel hat, Blutkrebspatienten eine zweite Chance auf Leben zu ermöglichen. Auch auf der...

Im Focus: Gendefekt bei Zellbaustein Aktin sorgt für massive Entwicklungsstörungen

Europäische Union fördert Forschungsprojekt „PredActin“ mit 1,2 Millionen Euro

Aktin ist ein wichtiges Strukturprotein in unserem Körper. Als Hauptbestandteil des Zellgerüstes sorgt es etwa dafür, dass unsere Zellen eine stabile Form...

Im Focus: Programmable nests for cells

KIT researchers develop novel composites of DNA, silica particles, and carbon nanotubes -- Properties can be tailored to various applications

Using DNA, smallest silica particles, and carbon nanotubes, researchers of Karlsruhe Institute of Technology (KIT) developed novel programmable materials....

Im Focus: Miniatur-Doppelverglasung: Wärmeisolierendes und gleichzeitig wärmeleitendes Material entwickelt

Styropor oder Kupfer – beide Materialien weisen stark unterschiedliche Eigenschaften auf, was ihre Fähigkeit betrifft, Wärme zu leiten. Wissenschaftlerinnen und Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz und der Universität Bayreuth haben nun gemeinsam ein neuartiges, extrem dünnes und transparentes Material entwickelt und charakterisiert, welches richtungsabhängig unterschiedliche Wärmeleiteigenschaften aufweist. Während es in einer Richtung extrem gut Wärme leiten kann, zeigt es in der anderen Richtung gute Wärmeisolation.

Wärmeisolation und Wärmeleitung spielen in unserem Alltag eine entscheidende Rolle – angefangen von Computerprozessoren, bei denen es wichtig ist, Wärme...

Im Focus: Miniature double glazing: Material developed which is heat-insulating and heat-conducting at the same time

Styrofoam or copper - both materials have very different properties with regard to their ability to conduct heat. Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz and the University of Bayreuth have now jointly developed and characterized a novel, extremely thin and transparent material that has different thermal conduction properties depending on the direction. While it can conduct heat extremely well in one direction, it shows good thermal insulation in the other direction.

Thermal insulation and thermal conduction play a crucial role in our everyday lives - from computer processors, where it is important to dissipate heat as...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

KIT im Rathaus: Städte und Wetterextreme

21.01.2020 | Veranstaltungen

11. Tagung Kraftwerk Batterie - Advanced Battery Power Conference am 24-25. März 2020 in Münster/Germany

16.01.2020 | Veranstaltungen

Leben auf dem Mars: Woher kommt das Methan?

16.01.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Differenzierte Bildgebung für bessere Diagnosen bei Brustkrebs

21.01.2020 | Medizin Gesundheit

Kurilen-Kamchatka-Graben im Pazifischen Ozean gehört nicht mehr zu den „10.000ern“

21.01.2020 | Geowissenschaften

Proteinfunktionen - Ein Lichtblitz genügt

21.01.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics