Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Akustische Nanomotoren

13.02.2018

Aktive Zelltransporter für den Cas9-sgRNA-Komplex mit Ultraschall-Antrieb

Für die Krebsforschung ist der Komplex Cas9-sgRNA ein außerordentlich wirkungsvolles Instrument, um zum Beispiel Tumorgene gezielt zu verändern. Eine Hürde stellt derzeit noch die Aufgabe dar, den Komplex quantitativ und schnell durch die Zellmembran und zum Genom zu bringen.


Wissenschaftler haben einen aktiven Nanomotor entwickelt, der das Genschneidesystem zielgerecht in der Zelle absetzt.

(c) Wiley-VCH

Amerikanische und dänische Wissenschaftler haben jetzt einen aktiven Nanomotor entwickelt, der das Genschneidesystem zielgerecht in der Zelle absetzt. Wie sie in der Zeitschrift Angewandte Chemie erläutern, erhält der Nanotransporter seinen Antrieb durch Ultraschall.

Die gezielte Veränderung von Genen gilt als hochinteressante Option für die Krebstherapie: Besonders, seit man kurz nach der Jahrtausendwende das adaptive bakterielle Immunabwehrsystem namens CRISPR und ihr Potenzial als Genschneidemaschinerie entdeckt hatte. Die heute benutzten CRISPR-Systeme zur Genveränderung setzten sich aus der „single-guide”-RNA oder sgRNA und dem Genschneideenzym der Cas-9-Nuklease zusammen. Während die sgRNA die Nuklease direkt zur gewünschten Gensequenz bringt, schneidet die Nuklease das Genom mit chirurgischer Effizienz.

Schwierig ist dagegen noch der Transport dieser großen Maschinerie von außen in die Zelle und zum Zielgenom. In der Zeitschrift Angewandte Chemie schlagen Liangfang Zhang und Joseph Wang von der University of California in San Diego und ihre Kollegen jetzt als aktiven Transporter Ultraschall-angetriebene Gold-Nanodrähte vor. Diese sollen den Cas9-sgRNA-Komplex nicht nur über die Zellmembran transportieren, sondern ihn in der Zelle auch zielgenau freisetzen.

Gold-Nanodrähte können eine Membran zwar durch Diffusion passiv überwinden. Eine aktive Beschleunigung durch einfache Ultraschallbehandlung ist jedoch durch die gegebene Asymmetrie ebenfalls möglich, wie die Autoren darlegen. „Die asymmetrische Form des Gold-Nanodraht-Motors, die im Herstellungsprozess angelegt wird, ist wesentlich für den akustischen Vortrieb”, heißt es in ihrem Artikel.

Den vollständigen Transporter setzten sie zusammen, indem sie den Cas-9-Protein/RNA-Komplex durch Sulfidbrücken am Gold-Nanodraht befestigten. Schwefelbindungen für die Verknüpfung von Motor und Ladung haben den Vorteil, dass diese Bindung in der Tumorzelle durch Glutathion wieder aufgebrochen wird.

Dieses kleine Peptid kommt als natürliche reduzierende Substanz in Tumorzellen besonders häufig vor. Es löst die Bindung des Cas9-sgRNA-Komplex zum Transporter-Draht, und der freigesetzte Komplex kann im Genom seine Funktion ausüben, zum Beispiel ein Gen ausschalten.

In ihrem Testsystem beobachteten die Wissenschaftler die Ausschaltung der Fluoreszenz von B16F10-Melanomzellen mit exprimiertem grünen fluoreszierenden Protein. Eine fünfminütigen Ultraschallbehandlung reichte, um den Nanomotor mit dem Cas9-sgRNA-Komplex in die Zelle eindringen zu lassen. Die Fluoreszenz wurde schon bei winzigsten Konzentrationen des Schneidekomplexes durch die Genausschaltung schnell und effektiv ausgelöscht.

Ein akustischer Nanomotor als aktiver Transporter für die Gentherapie, und das bei geringsten Mengen an Schneideenzym, ist ein bemerkenswertes Ergebnis, das in die Zukunft weist. Eine weitere Errungenschaft ist dessen einfacher Aufbau aus wenigen, leicht erhältlichen Komponenten.

Angewandte Chemie: Presseinfo 04/2018

Autor: Joseph Wang, University of California, San Diego (USA), http://joewang.ucsd.edu/

Link zum Originalbeitrag: https://doi.org/10.1002/ange.201713082

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Karin J. Schmitz | Gesellschaft Deutscher Chemiker e.V.

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Nonstop-Transport von Frachten in Nanomaschinen
20.11.2018 | Max-Planck-Institut für molekulare Zellbiologie und Genetik

nachricht Wie sich ein Kristall in Wasser löst
20.11.2018 | Ruhr-Universität Bochum

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics