Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Akku an Silizium aufladen, nicht an Kohlenstoff

12.10.2016

Anoden aus porös-amorphem Silizium könnten die Leistung von Lithiumionenakkumulatoren verbessern

Demnächst enthalten Lithiumionenakkumulatoren möglicherweise keine Anode aus Graphit mehr. Silizium als Anodenmaterial bietet eine viel höhere Ladungskapazität, aber seine Kristallinität war bislang von Nachteil. In der Zeitschrift Angewandte Chemie stellen chinesische Wissenschaftler eine poröse amorphe Siliziummodifikation vor, die anderen Anodenmaterialen in wiederaufladbaren Batterien deutlich überlegen sein könnte.


Anoden aus Silizium lösen vielleicht bald Graphit ab.

(c) Wiley-VCH

Die derzeit gängigste Anode in Lithiumionenakkumulatoren besteht aus Kohlenstoff in seiner Graphitmodifikation. Allerdings hat ausgerechnet Graphit eine relativ niedrige Ladungskapazität. Weitere bekannte Probleme von Lithiumionenbatterien sind eine geringe Zyklenanzahl, steigender interner Widerstand während der Ladezyklen, Alterung sowie Sicherheitsaspekte.

Die nächstliegende Alternative zu Kohlenstoff wäre Silicium, das eine fast zehnfach höhere theoretische Ladungskapazität als Graphit bietet. Der Lade- und Entladevorgang wird jedoch zum Problem: Ausdehnen und Schrumpfen bei den Zyklen führt zu Pulverisierung und Kapazitätseinbruch. Jian Yang und seine Kollegen an der Shangdong-Universität in China haben jetzt eine amorphe poröse Siliziummodifikation hergestellt, die diese Nachteile kompensiert.

Den amorphen Zustand von Silizium zu nehmen, sei eigentlich die logische Konsequenz, weil das Silizium sowieso amorph ende, erläutern die Wissenschaftler: "Da das Silizium durch die elektrochemische Lithiierung/Delithiierung im Endeffekt amorph wird, ist es sehr attraktiv, es von vorneherein in diesem Zustand einzusetzen."

Gezielt amorphes Silizium herzustellen, ist aber sehr schwierig, besonders wenn einfache Bedingungen gefragt sind. Das Verfahren, das die Forscher letztlich fanden, beinhaltet jedoch relativ sichere Ausgangsmaterialien wie zum Beispiel einen gängigen Glycolether als Lösungsmittel und leicht handhabbare Flüssigkeiten. Daher sollte ihr Verfahren insbesondere "für eine künftige Massenproduktion sehr attraktiv" sein, stellen die Autoren heraus.

Das auf diese Weise hergestellte amorph-poröse Silizium erfüllte die elektrochemischen Vorgaben hervorragend. Es besitzt eine dreimal bessere Kapazität als Graphit und eine weit besserer Zyklenstabilität als kristallines Silizium, was die Wissenschaftler durch die gezielt hergestellten großen Poren und eine luftoxidierte Oberfläche erklären können. Und weiteres Potenzial sei vorhanden: Etwas Kohlenstoff zusätzlich in die Struktur hinein, und die elektrochemische Leistungsfähigkeit werde wahrscheinlich noch besser werden, sagt Yang.

Angewandte Chemie: Presseinfo 32/2016

Autor: Jian Yang, Shandong University (China), mailto:yangjian@sdu.edu.cn

Link zum Originalbeitrag: http://dx.doi.org/10.1002/ange.201608146

Angewandte Chemie, Postfach 101161, 69451 Weinheim, Germany.

Weitere Informationen:

http://presse.angewandte.de

Dr. Renate Hoer | Gesellschaft Deutscher Chemiker e.V.

Weitere Berichte zu: Akku Angewandte Chemie Graphit Kohlenstoff Silicium Silizium

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Blasentang zeigt gekoppelte Reaktionen auf Umweltveränderungen
15.10.2019 | GEOMAR Helmholtz-Zentrum für Ozeanforschung Kiel

nachricht Nachweis erbracht: Genmutation in Chloridkanal löst Hyperaldosteronismus aus
15.10.2019 | Forschungsverbund Berlin e.V.

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Rätsel gelöst: Das Quantenleuchten dünner Schichten

Eine ganz spezielle Art von Licht wird von Wolfram-Diselenid-Schichten ausgesandt. Warum das so ist, war bisher unklar. An der TU Wien wurde nun eine Erklärung gefunden.

Es ist ein merkwürdiges Phänomen, das jahrelang niemand erklären konnte: Wenn man einer dünnen Schicht des Materials Wolfram-Diselenid Energie zuführt, dann...

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Rätsel gelöst: Das Quantenleuchten dünner Schichten

15.10.2019 | Physik Astronomie

Immer im richtigen Takt: Ultrakurze Lichtblitze unter optischer Kontrolle

15.10.2019 | Physik Astronomie

„Tanzmuster“ von Skyrmionen vermessen

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics