Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Äußerst selten, aber mehrfach positiv

19.10.2015

Wissenschaftler isolieren erstmals eine Anhäufung von mehreren Metallatomen und entdecken das „Bermuda-Cluster“

Durch die passende Kombination von einfach negativ geladenen Anionen und neutralen Liganden, einer Art molekularem Stützkorsett, ist es Dr. Martin R. Lichtenthaler aus dem Arbeitskreis von Prof. Dr. Ingo Krossing gelungen, erstmals äußerst seltene und mehrfach positiv geladene kationische Indium-Clusterverbindungen zu isolieren.


Einzig das Metal (Indium oder Gallium) entscheidet, welcher Reaktionsweg eingeschlagen wird. Foto: nmcandre/Fotolia

Diese Anhäufung mehrerer Atome stellt einen wichtigen Beitrag für das grundlegende Verständnis der Wechselwirkung von Metallatomen auf dem Weg vom isolierten Atom zum Nanopartikel und schließlich zum klassischen Metall dar. Die Ergebnisse hat das Team nun in der Fachzeitschrift „Nature Communications“ veröffentlicht.

75 Prozent der chemischen Elemente sind Metalle. Diese können elementar sein, also ausschließlich aus elektrisch leitenden Metallatomen bestehen. Oder sie liegen als Metall-Komplexverbindung vor, indem ein Metallatom von einer bestimmten Anzahl anderer in Liganden gebundener Atome umgeben ist. Für einen fließenden Übergang zwischen diesen beiden Extremen sorgen Metall-Clusterverbindungen: große Moleküle mit zwei oder mehr direkt miteinander verknüpften Metallatomen, die häufig negativ oder neutral geladen sind, doch sehr selten positiv.

Die Freiburger Wissenschaftler isolierten nun erstmals kationische Indium-Clusterverbindungen mit drei bis vier Indium-Metallatomen. Der Schlüssel zum Erfolg waren schwach koordinierende Anionen. Das sind voluminöse, einfach negativ geladene Anionen, die mit den positiv geladenen Kationen kaum in Wechselwirkung treten. Die Forscher kombinierten diese Anionen mit Chelat-Liganden, die jedes Metallatom in der Clusterverbindung von mindestens zwei Positionen aus umschließen.

Die Ergebnisse haben das Team überrascht, da die mehrfach positiv geladenen Verbindungen aufgrund der ausgeprägten Abstoßung gleichnamig geladener Teilchen eigentlich „explodieren“ sollten. „Ich hätte nie gedacht, dass solch kuriose Clusterverbindungen zugänglich sind“, sagt Krossing. „Aufgrund der dreieckigen Struktur bezeichnen wir die neuen Verbindungen als Bermuda-Cluster.“

Analoge Versuche mit Gallium, dem leichteren „Verwandten“ des Indiums, führten zu anderen Ergebnissen: Gallium bildet unter vergleichbaren Bedingungen keine Clusterverbindungen, sondern einen ungewöhnlichen, zweifach positiv geladenen Metallkomplex. In einer Zusammenarbeit mit der Arbeitsgruppe von Prof. Dr. Stefan Weber wiesen die Forscher bei der hochreaktiven Gallium-Komplexverbindung so genannten Paramagnetismus nach, also ungepaarte Elektronen.

„Für uns ist das ein klarer Befund, dass das Gallium-Atom an der elektronischen Struktur der eingesetzten Liganden nicht unschuldig ist“, sagt Krossing. Die Wissenschaftler sind überzeugt, dass dieser Ansatz eine neue und allgemein anwendbare Route gerade zu den seltenen positiv geladenen Clusterverbindungen aufzeigt, sofern Metallatome und Liganden passend aufeinander abgestimmt werden.

Ingo Krossing hat die Professur für Molekül- und Koordinationschemie am Institut für Anorganische und Analytische Chemie der Universität Freiburg inne. Seine Forschungsschwerpunkte reichen von der Synthese, Charakterisierung und Anwendung ionischer Systeme bis hin zur Entwicklung neuer fundamentaler Konzepte für absolute Brønsted-Aciditäts- und Redoxskalen.

Martin R. Lichtenthaler hat in Krossings Arbeitsgruppe zu einwertigen Gallium-Salzen und deren Anwendung als Katalysatoren in der Olefin-Polymerisation promoviert. Stefan Weber ist Inhaber der Professur für Physikalische Chemie mit dem Schwerpunkt Magnetische Resonanz an der Universität Freiburg. Er entwickelt neue Methoden, um mit der Elektronenspinresonanz und der Kernspinresonanz Fragen aus der Chemie, den Lebens- und den Materialwissenschaften zu beantworten.

Originalpublikation:
Martin R. Lichtenthaler, Florian Stahl, Daniel Kratzert, Lorenz Heidinger, Erik Schleicher, Julian Hamann, Daniel Himmel, Stefan Weber, Ingo Krossing (2015): Cationic Cluster Formation vs. Disproportionation of Low Valent Indium and Gallium Complexes of 2,2’ Bipyridine. In: Nature Communications. doi: 10.1038/ncomms9288


Kontakt:

Prof. Dr. Ingo Krossing
Institut für Anorganische und Analytische Chemie
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-6122
E-Mail: krossing@uni-freiburg.de

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau
Weitere Informationen:
https://www.pr.uni-freiburg.de/pm/2015/pm.2015-10-19.151

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

nachricht Krebsstammzellen nachverfolgen
20.02.2020 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Im Focus: Charakterisierung von thermischen Schnittstellen für modulare Satelliten

Das Fraunhofer IFAM in Dresden hat ein neues Projekt zur thermischen Charakterisierung von Kupfer/CNT basierten Scheiben für den Einsatz in thermalen Schnittstellen von modularen Satelliten gestartet. Gefördert wird das Projekt „ThermTEST“ für 18 Monate vom Bundesministerium für Wirtschaft und Energie.

Zwischen den Einzelmodulen von modularen Satelliten werden zur Kopplung eine Vielzahl von Schnittstellen benötigt, die nach ihrer Funktion eingeteilt werden...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

10.000-mal schnellere Berechnungen möglich

20.02.2020 | Physik Astronomie

Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien

20.02.2020 | Biowissenschaften Chemie

Krebsstammzellen nachverfolgen

20.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics