Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abwehrsystem automatisch aufgeschlüsselt

16.10.2015

Ein Forscherteam hat eine Software entwickelt, die erkennt, wie Bakterien sich gegen Viren verteidigen

Es ist ein Kampf, der seit Urzeiten herrscht – im Wasser, auf der Erde und sogar auf der Haut und im Magen des Menschen: Wenn Viren, die so genannten Bakteriophagen oder kurz Phagen, Bakterien befallen, können sie Schaden anrichten.


Allgemeiner Aufbau eines CRISPR-cas-Systems. Die Klassifizierung basiert auf der Komposition der CRISPR-assoziierten Proteine (cas). Grafik: Rolf Backofen

Aktuelle Studien legen nahe, dass Phagen eine Rolle bei chronischen Darmerkrankungen wie Morbus Crohn spielen könnten. Doch Bakterien sind anpassungsfähig: Sie verändern ihr Immunsystem, als CRISPR-Cas bezeichnet, um sich zu schützen. Erstmals ist es nun einer Gruppe um den Freiburger Bioinformatiker Prof. Dr. Rolf Backofen gelungen, die mehr als 2.000 bekannten CRISPR-Abwehrsysteme von Bakterien zu klassifizieren.

Gemeinsam mit seinen Mitarbeitern Omer S. Alkhnbashi und Fabrizio Costa, seiner Mitarbeiterin Sita J. Saunders sowie mit dem US-amerikanischen National Center for Biotechnology Information hat der Forscher die CRISPR-Cas-Systeme in zwei Klassen, fünf Typen und 16 Subtypen unterteilt. Dazu nutzte das Team eine selbstentwickelte Software: „Basierend auf maschinellem Lernen ist unser Programm imstande, jedes neue Abwehrsystem automatisch zu klassifizieren“, sagt der Bioinformatiker. Die Ergebnisse sind in der Fachzeitschrift „Nature Reviews Microbiology“ erschienen.

Die Viren nutzen eine schwer zu schlagende Waffe: Sie entwickeln sich schnell und können sich dadurch immer neuen Wirten anpassen. Die Bakterien jedoch können sich zur Wehr setzen. Sie haben ein so genanntes adaptives Immunsystem. Das bedeutet, dass Bakterien, die eine Phageninfektion überlebt haben, sich gegen weitere Infektionen desselben Erregers schützen können.

Dazu nutzen sie das System CRISPR-Cas. Es basiert auf Ribonukleinsäure, die für die Biosynthese von Proteinen verantwortlich ist. Bakterien integrieren ein kurzes Stück der ursprünglichen Viren-DNA in ihr CRISPR-System. Jede eindringende DNA, die eine große Ähnlichkeit mit diesem gespeicherten Stück aufweist, wird vom Bakterium umgehend unschädlich gemacht. Diese Immunität, also die Information im CRISPR-Cas-System, können verschiedene Bakterien auch über den so genannten horizontalen Gen-Transfer miteinander teilen – sie impfen sich sozusagen gegenseitig.

Die Flexibilität macht die Klassifikation verschiedener CRISPR-Systeme schwierig – bisher war diese Arbeit nur durch mühsame manuelle Analyse möglich. Die von Backofens Team entwickelte Software verarbeitet und analysiert unzählige Datenmengen in kurzer Zeit. So können mehr als 20.000 Proteinsequenzen in fünf Minuten analysiert werden.

„Insbesondere ist es nun auch möglich, Bakterien zum Beispiel im Magen oder auf der Haut als Ganzes zu sequenzieren und nach den vorhandenen Bakteriophagen-Immunitäten, also CRISPR-Systemen, zu untersuchen“, sagt der Forscher.

Aber das CRISPR-cas System ist auch biotechnologisch von Bedeutung. So wurden bereits vor zwei Jahren Bausteine eines CRISPR-cas Systems kombiniert, um eine neue und zuverlässigere Technologie für das Editieren von Genomen zu etablieren. Diese Technologie ist nun weltweiter Standard und hat die alten Verfahren fast komplett ersetzt. Die Klassifizierung der Abwehrsysteme erleichtert die Suche nach neuen biotechnologisch einsetzbaren Systemen erheblich.

Originalveröffentlichung:
Kira S. Makarova, Yuri I. Wolf, Omer S. Alkhnbashi, Fabrizio Costa, Shiraz A. Shah, Sita J. Saunders, Rodolphe Barrangou, Stan J. J. Brouns, Emmanuelle Charpentier, Daniel H. Haft, Philippe Horvath, Sylvain Moineau, Francisco J. M. Mojica, Rebecca M. Terns, Michael P. Terns, Malcolm F. White, Alexander F. Yakunin, Roger A. Garrett, John van der Oost, Rolf Backofen, Eugene V. Koonin (2015): An updated evolutionary classification of CRISPR–Cas systems In: Nature Reviews Microbiology. doi:10.1038/nrmicro3569

Kontakt:
Prof. Dr. Rolf Backofen
Institut für Informatik
Albert-Ludwigs-Universität Freiburg
Tel.: 0761/203-7461
E-Mail: backofen@informatik.uni-freiburg.de

Weitere Informationen:

https://www.pr.uni-freiburg.de/pm/2015/pm.2015-10-16.150

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg im Breisgau

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Hansdampf im Katalyselabor: LIKAT-Chemiker vereinfachen die Amin-Synthese
22.10.2018 | Leibniz-Institut für Katalyse e. V. an der Universität Rostock

nachricht Weniger Pestizide, mehr Bildung: 9-Punkte-Plan gegen das Insektensterben
22.10.2018 | Universität Hohenheim

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Auf dem Weg zu maßgeschneiderten Naturstoffen

Biotechnologen entschlüsseln Struktur und Funktion von Docking Domänen bei der Biosynthese von Peptid-Wirkstoffen

Mikroorganismen bauen Naturstoffe oft wie am Fließband zusammen. Dabei spielen bestimmte Enzyme, die nicht-ribosomalen Peptid Synthetasen (NRPS), eine...

Im Focus: Größter Galaxien-Proto-Superhaufen entdeckt

Astronomen enttarnen mit dem ESO Very Large Telescope einen kosmischen Titanen, der im frühen Universum lauert

Ein Team von Astronomen unter der Leitung von Olga Cucciati vom Istituto Nazionale di Astrofisica (INAF) Bologna hat mit dem VIMOS-Instrument am Very Large...

Im Focus: Auf Wiedersehen, Silizium? Auf dem Weg zu neuen Materalien für die Elektronik

Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) in Mainz haben zusammen mit Wissenschaftlern aus Dresden, Leipzig, Sofia (Bulgarien) und Madrid (Spanien) ein neues, metall-organisches Material entwickelt, welches ähnliche Eigenschaften wie kristallines Silizium aufweist. Das mit einfachen Mitteln bei Raumtemperatur herstellbare Material könnte in Zukunft als Ersatz für konventionelle nicht-organische Materialien dienen, die in der Optoelektronik genutzt werden.

Bei der Herstellung von elektronischen Komponenten wie Solarzellen, LEDs oder Computerchips wird heutzutage vorrangig Silizium eingesetzt. Für diese...

Im Focus: Goodbye, silicon? On the way to new electronic materials with metal-organic networks

Scientists at the Max Planck Institute for Polymer Research (MPI-P) in Mainz (Germany) together with scientists from Dresden, Leipzig, Sofia (Bulgaria) and Madrid (Spain) have now developed and characterized a novel, metal-organic material which displays electrical properties mimicking those of highly crystalline silicon. The material which can easily be fabricated at room temperature could serve as a replacement for expensive conventional inorganic materials used in optoelectronics.

Silicon, a so called semiconductor, is currently widely employed for the development of components such as solar cells, LEDs or computer chips. High purity...

Im Focus: Blauer Phosphor – jetzt erstmals vermessen und kartiert

Die Existenz von „Blauem“ Phosphor war bis vor kurzem reine Theorie: Nun konnte ein HZB-Team erstmals Proben aus blauem Phosphor an BESSY II untersuchen und über ihre elektronische Bandstruktur bestätigen, dass es sich dabei tatsächlich um diese exotische Phosphor-Modifikation handelt. Blauer Phosphor ist ein interessanter Kandidat für neue optoelektronische Bauelemente.

Das Element Phosphor tritt in vielerlei Gestalt auf und wechselt mit jeder neuen Modifikation auch den Katalog seiner Eigenschaften. Bisher bekannt waren...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungen

Natürlich intelligent

19.10.2018 | Veranstaltungen

Rettungsdienst und Feuerwehr - Beschaffung von Rettungsdienstfahrzeugen, -Geräten und -Material

18.10.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Lehren und Lernen mit digitalen Medien im Fokus

22.10.2018 | Veranstaltungsnachrichten

Hansdampf im Katalyselabor: LIKAT-Chemiker vereinfachen die Amin-Synthese

22.10.2018 | Biowissenschaften Chemie

Weniger Pestizide, mehr Bildung: 9-Punkte-Plan gegen das Insektensterben

22.10.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics