Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

3D-Mikroroboter für minimal-invasive Chirurgie

03.05.2017

Wissenschaftler am Max-Planck-Institut für Intelligente Systeme in Stuttgart haben einen Herstellungsprozess für Mikroroboter entwickelt. Diese könnten zukünftig miminal-invasiv schwer zugängliche Körperteile wie das Gehirn, das Rückenmark oder das Auge erreichen

Ein kleiner Roboter, der mühelos mittels Injektion in den menschlichen Körper gelangt, die gesunden Organe meidet und das Ziel – einen nicht operablen Tumor – findet und direkt behandelt… Klingt dies nicht nach Science-Fiction?


Abbildungen 1 und 2. Mikroschwimmer CAD und mikroskopische Darstellung des Mikroschwimmers

© MPI IS


Abbildungen 3 und 4. Mikroblume CAD und mikroskopische Darstellung der Mikroblume

© MPI IS

Um es Wirklichkeit werden zu lassen, arbeiten immer mehr Forscher an der Vision, wesentliche Bereiche der Medizin und Biotechnologie zu revolutionieren. Das Design und die Herstellung solcher Mikroroboter, sowie auch die Ausstattung mit den entsprechenden Funktionalitäten, stellen jedoch noch große Herausforderungen dar.

Design zum Schaffen bringen

Herkömmliche Methoden ermöglichen nur die Herstellung von relativ einfachen geometrischen Strukturen mit begrenzter Designflexibilität und Funktion. Diese sogenannten „passiven“ Systeme sind auf eine bestimmte Form wie Zylinder oder Kugel beschränkt, und ihre schlichte Struktur erlaubt nur eine eingeschränkte chemische Funktionalität.

Um diese Limitierung zu überwinden, entwickelten Prof. Metin Sitti und seine Mitarbeiter aus der Abteilung „Physische Intelligenz“ am Max-Planck-Institut für Intelligente Systeme in Stuttgart vor kurzem einen neuen zweistufigen Ansatz, der die Mikroroboter mit spezifischen Funktionen auszustatten vermag.

Der erste Schritt, die Kreation des Designs, das zur weiteren Ausarbeitung des Mikroschwimmers befähigt ist, – erfolgt mittels Vernetzung von lichtempfindlichen Polymeren. Dieser Schritt basiert auf der sog. 3D-Laserlithographietechnik und ermöglicht die Herstellung von chemisch homogenen Grundstrukturen mit hoher Anpassungsfähigkeit (siehe Abbildung 1).

Der zweite Schritt stellt die Verknüpfung von Funktionalitäten mit dem erzeugten 3D-Sample an den spezifisch ausgewählten Stellen dar: Die bereits gefertigte Struktur wird mit chemisch kompatiblen kleinen Molekülen modifiziert, die in der Lage sind, neue chemische Gruppen auf die gewünschten Teile des Materials einzuführen (siehe Abbildung 2). Dies erreichen die Wissenschaftler durch selektive, dreidimensionale Ausleuchtung: Ein nativer Polymervorläufer wird entfernt und ein neuer Vorläufer, der die gewünschte chemische Funktionalität trägt, wird eingeführt.

„Die Größenskala solcher Mikroroboter bestimmt stark, welche Werkzeuge verwendet werden können, damit man in der Lage ist, sie mit den bestimmten Fähigkeiten auszustatten. Und das stellt die größte Herausforderung dar: Nicht nur das geeignete Design zu schaffen, sondern auch einen Weg zu finden, dass es auch auf der Mikroskala funktioniert. Unsere Forschung ist die erste Studie, die die Information von der Computergestaltung in die funktionale Struktur auf der Mikroskala übersetzt“, erklärt Dr. Hakan Ceylan, Postdoktorand am Max-Planck-Institut für intelligente Systeme.

Um das Konzept zu beweisen, bereiteten die Autoren zunächst einen kugelförmigen Mikroschwimmer vor, bei dem der innere Hohlraum mit katalytischen Platin-Nanopartikeln in einem mehrstufigen Prozess selektiv modifiziert wurde. Zur Demonstration der Möglichkeiten und der Wichtigkeit dieser Methode für die Entwicklung von Biomaterialien entwarfen die Forscher an den präzise definierten Positionen eine Mikroblume mit orthogonalen Biotin-, Thiol- und Alkin-Gruppen darauf (siehe Abbildungen 3 und 4).

Größere Intelligenz in kleineren Dimensionen

In der Natur verwenden hirnlose Organismen, wie Schleimpilze, Bakterien und Pflanzen, die physische Intelligenz als Hauptweg der Entscheidungsfindung und Anpassung an komplexe und sich veränderte Umweltbedingungen. In gleicher Weise nutzt die Abteilung „Physische Intelligenz“ des Max-Planck-Instituts für Intelligente Systeme die physikalischen und chemischen Eigenschaften von Materialien, um aktive Aufgaben auf der Mikroskala zu programmieren.

„Unser Hauptziel ist es, neue Methoden der Herstellung von miniaturisierten Materialien zu entwickeln, die sich intelligent in komplexen und instabilen Umgebungen verhalten. Eine wichtige Frage dabei ist, wie solche Intelligenz in kleinen Dimensionen, wo keine konventionellen Rechenfähigkeiten vorhanden sind, erreicht werden kann“, sagt Ceylan. „Unser neu entwickelter Zwei-Stufen-Ansatz ist ein bedeutender Schritt in dieser Richtung“.

Mobile Roboter in Mikrogröße bieten besondere Vorteile, um neuartige Bioengineering-Konzepte zu verfolgen. Im Rahmen dieser Methode möchten die Wissenschaftler mittels Computerunterstützung neue, hochkomplexe Designs für „intelligente“ Mikroschwimmer schaffen. Funktionelle weiche Materialien unter einem Millimeter versprechen unzählige Anwendungen in verschiedenen Bereichen, einschließlich der Biotechnologie, der gezielten Lieferung von Wirksubstanzen durch mobile Mikroroboter der künstlichen Gewebezüchtung usw.

Ein sich selbst antreibender Mikroroboter, so klein wie eine einzelne Körperzelle, und ausgestattet mit einer Wahrnehmungsfunktion, könnte einen bisher beispiellosen direkten Zugang zu tiefen und empfindlichen Körperstellen wie dem Gehirn, dem Rückenmark und dem Auge ermöglichen. Bei minimal-invasiven Operationen eingesetzt, würde ein solcher Mikroschwimmer neue Wege der medizinischen Intervention mit minimaler Gewebeschädigung im Vergleich zu den gebundenen Kathetern und Endoskopen bei herkömmlichen invasiven Operationsverfahren eröffnen.

Obwohl alle diese neuen Möglichkeiten, die ein winziger Roboter mit sich bringt, noch Zukunftsmusik sind, kann dies nach Meinung der Wissenschaftler bald Realität werden. „In naher Zukunft – vermutlich in etwa 10 Jahren – könnte dies enorme Anwendungen in der Gewebezüchtung und in der regenerativen Medizin bieten“, so Ceylan, „Außerdem eröffnet diese Methode große Chancen in der Behandlung von genetischen Erkrankungen durch ein einzelnes Protein auf Zellebene oder durch die Übertragung von Nukleinsäuren. Solche autarken, aktiven Materialien sind besonders attraktiv für die Mikrorobotik und potentielle medizinische Carriersysteme“.

Weitere Informationen:

http://www.is.mpg.de/de/sitti

Anna Bajrakov | Max-Planck-Institut für Intelligente Systeme

Weitere Nachrichten aus der Kategorie Biowissenschaften Chemie:

nachricht Betazellfunktion im Tiermodell wiederhergestellt: Neue Wirkstoffkombination könnte Diabetes-Remission ermöglichen
21.02.2020 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Darmkrebs: Erhöhte Lebenserwartung dank individueller Therapien
20.02.2020 | Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Biowissenschaften Chemie >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultraschnelles Schalten eines optischen Bits: Gewinn für die Informationsverarbeitung

Wissenschaftler der Universität Paderborn und der TU Dortmund veröffentlichen Ergebnisse in Nature Communications

Computer speichern Informationen in Form eines Binärcodes, einer Reihe aus Einsen und Nullen – sogenannten Bits. In der Praxis werden dafür komplexe...

Im Focus: Fraunhofer IOSB-AST und DRK Wasserrettungsdienst entwickeln den weltweit ersten Wasserrettungsroboter

Künstliche Intelligenz und autonome Mobilität sollen dem Strukturwandel in Thüringen und Sachsen-Anhalt neue Impulse verleihen. Mit diesem Ziel fördert das Bundeswirtschaftsministerium ab sofort ein innovatives Projekt in Halle (Saale) und Ilmenau.

Der Wasserrettungsdienst Halle (Saale) und das Fraunhofer Institut für Optronik,
Systemtechnik und Bildauswertung, Institutsteil Angewandte Systemtechnik...

Im Focus: A step towards controlling spin-dependent petahertz electronics by material defects

The operational speed of semiconductors in various electronic and optoelectronic devices is limited to several gigahertz (a billion oscillations per second). This constrains the upper limit of the operational speed of computing. Now researchers from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg, Germany, and the Indian Institute of Technology in Bombay have explained how these processes can be sped up through the use of light waves and defected solid materials.

Light waves perform several hundred trillion oscillations per second. Hence, it is natural to envision employing light oscillations to drive the electronic...

Im Focus: Haben ein Auge für Farben: druckbare Lichtsensoren

Kameras, Lichtschranken und Bewegungsmelder verbindet eines: Sie arbeiten mit Lichtsensoren, die schon jetzt bei vielen Anwendungen nicht mehr wegzudenken sind. Zukünftig könnten diese Sensoren auch bei der Telekommunikation eine wichtige Rolle spielen, indem sie die Datenübertragung mittels Licht ermöglichen. Wissenschaftlerinnen und Wissenschaftlern des Karlsruher Instituts für Technologie (KIT) am InnovationLab in Heidelberg ist hier ein entscheidender Entwicklungsschritt gelungen: druckbare Lichtsensoren, die Farben sehen können. Die Ergebnisse veröffentlichten sie jetzt in der Zeitschrift Advanced Materials (DOI: 10.1002/adma.201908258).

Neue Technologien werden die Nachfrage nach optischen Sensoren für eine Vielzahl von Anwendungen erhöhen, darunter auch die Kommunikation mithilfe von...

Im Focus: Einblicke in die Rolle von Materialdefekten bei der spin-abhängigen Petahertzelektronik

Die Betriebsgeschwindigkeit von Halbleitern in elektronischen und optoelektronischen Geräten ist auf mehrere Gigahertz (eine Milliarde Oszillationen pro Sekunde) beschränkt. Die Rechengeschwindigkeit von modernen Computern trifft dadurch auf eine Grenze. Forscher am MPSD und dem Indian Institute of Technology in Bombay (IIT) haben nun untersucht, wie diese Grenze mithilfe von Lichtwellen und Festkörperstrukturen mit Defekten erhöht werden könnte, um noch größere Rechenleistungen zu erreichen.

Lichtwellen schwingen mehrere hundert Trillionen Mal pro Sekunde und haben das Potential, die Bewegung von Elektronen zu steuern. Im Gegensatz zu...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungen

Gemeinsam auf kleinem Raum - Mikrowohnen

19.02.2020 | Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Globale Datenbank für Karstquellenabflüsse

21.02.2020 | Geowissenschaften

Leopoldina-Symposium: „Mission – Innovation“ 2020

21.02.2020 | Veranstaltungsnachrichten

Langlebige Fachwerkbrücken aus Stahl einfacher bemessen

21.02.2020 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics