Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Im Gestein, im Boden und in der Zelle: drei neue DFG-Forschergruppen an der RUB

20.03.2013
Bochumer analysieren Protein-Transport, Kohlenstoffzyklus und Karbonate als Archive der Erdgeschichte

Erdgeschichte, Kohlenstoffzyklus und bestimmte Zellorganellen, die Peroxisomen, nehmen Forscher der Ruhr-Universität Bochum künftig genauer unter die Lupe. Die Deutsche Forschungsgemeinschaft gab am 15. März bekannt, dass drei von acht neu eingerichteten Forschergruppen an die RUB kommen. Gleich zwei neue Forschergruppen entstehen in der Fakultät für Geowissenschaften, eine weitere an der Medizinischen Fakultät. Die DFG bewilligte die Projekte für zunächst drei Jahre.

Was Karbonate wirklich über die Erdgeschichte verraten

Karbonate verraten viel über die physikalische und chemische Entwicklung von Ozeanen, Atmosphäre und Klima. Um die Erdgeschichte zu erforschen und ein besseres Verständnis über unser zukünftiges Klima zu erhalten, betrachten Wissenschaftler daher häufig Karbonate biologischen und nicht biologischen Ursprungs. Diese Archive verändern sich möglicherweise auch nach ihrer Ablagerung und verändern somit ihren Informationsgehalt. Wie stark und in welcher Weise sich Karbonate und ihre Umweltinformationen im Laufe der Zeit verändern, erforscht das Team um Prof. Dr. Adrian Immenhauser vom RUB-Lehrstuhl für Sediment- und Isotopengeologie zusammen mit Kollegen an acht Universitäten in Deutschland, Österreich und der Schweiz. Er ist Sprecher der Forschergruppe „CHARON: Marine Carbonate Archives: Controls on Carbonate Precipitation and Pathways of Diagenetic Alteration“. In dem Projekt bringen die Forscher analytische Methoden aus verschiedenen naturwissenschaftlichen Disziplinen zusammen.

Der vergessene Teil des Kohlenstoffzyklus

In der Forschergruppe „The Forgotten Part of Carbon Cycling: Organic Matter Storage and Turnover in Subsoils (SUBSOM)“ untersuchen Bodenkundler um Prof. Dr. Bernd Marschner den Kohlenstoffzyklus im Unterboden. Unterhalb einer Tiefe von 30 cm sind über 50 % des Kohlenstoffs, der sich weltweit im Humus, findet, gespeichert. Über Umsatz und Verweilzeit dieser Kohlenstoffvorkommen ist nur sehr wenig bekannt. Ziel des Projekts ist es zu klären, wie sich ein verändertes Klima oder eine veränderte Landnutzung auf diese Vorräte auswirkt. Zu diesem Zweck bestimmen die Wissenschaftler unter anderem Alter und Zusammensetzung verschiedener Humusbestandteile und Kohlenstoffflüsse, und führen Versuche durch, bei denen sie Temperatur, Feuchtigkeit und Belüftung variieren. Die Ergebnisse wollen die zehn bundesweit tätigen Arbeitsgruppen für die Entwicklung neuer Computermodelle einsetzen. Eine besondere Herausforderung in dem Projekt ist, dass die Kohlenstoffkonzentrationen im Unterboden sehr gering sind und darüber hinaus räumlich und zeitlich stark schwanken.

Wie Proteine in das Innere von Peroxisomen gelangen

Peroxisomen sind Zellorganellen mit vielen verschiedenen Funktionen. Sie verbrennen zum Beispiel Fettsäuren und machen das giftige Wasserstoffperoxid unschädlich. Für diese Arbeit benötigen sie Proteine, die in der Zellflüssigkeit hergestellt und dann importiert werden müssen. Der Import in die Peroxisomen läuft anders ab als bei anderen Zellorganellen, denn die Proteine können auch in gefalteter Form ins Innere gelangen. Die dafür verantwortlichen Rezeptoren wechseln zwischen zwei Formen hin und her: einer löslichen in der Zellflüssigkeit und einer an die Membran des Peroxisoms gebundenen Form. Forscher um Prof. Dr. Ralf Erdmann aus der Abteilung für Systembiochemie wollen die Struktur und Funktion dieser speziellen Protein-Transportmaschinerie, des sogenannten Translokons, aufklären. Die Ergebnisse können zu einem besseren Verständnis von Krankheiten beitragen, die durch eine fehlerhafte Reifung der Peroxisomen entstehen. In der Forschergruppe „Struktur und Funktion des peroxisomalen Translokons (PerTrans)“ arbeiten die Bochumer um Sprecher Ralf Erdmann mit Teams aus Hamburg, München, Göttingen, Osnabrück, Frankfurt, Freiburg und Oxford, Großbritannien zusammen.

Weitere Informationen

Prof. Dr. Adrian Immenhauser, Lehrstuhl für Sediment- und Isotopengeologie, Institut für Geologie, Mineralogie und Geophysik, Fakultät für Geowissenschaften der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-28250, E-Mail: adrian.immenhauser@rub.de

Prof. Dr. Bernd Marschner, Arbeitsbereich Bodenkunde und Bodenökologie, Geographisches Institut, Fakultät für Geowissenschaften der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-22108, E-Mail: bernd.marschner@rub.de

Prof. Dr. Ralf Erdmann, Abteilung für Systembiochemie, Institut für Physiologische Chemie, Medizinische Fakultät der Ruhr-Universität, 44780 Bochum, Tel. 0234/32-24943, E-Mail: ralf.erdmann@rub.de

Redaktion: Dr. Julia Weiler

Dr. Josef König | idw
Weitere Informationen:
http://www.ruhr-uni-bochum.de

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: I-call – Wenn Mikroimplantate miteinander kommunizieren / Innovationstreiber Digitalisierung - »Smart Health«

Die Mikroelektronik als Schlüsseltechnologie ermöglicht zahlreiche Innovationen im Bereich der intelligenten Medizintechnik. Das vom Fraunhofer-Institut für Biomedizinische Technik IBMT koordinierte BMBF-Verbundprojekt »I-call« realisiert erstmals ein Elektroniksystem zur ultraschallbasierten, sicheren und störresistenten Datenübertragung zwischen Implantaten im menschlichen Körper.

Wenn mikroelektronische Systeme für medizintechnische Anwendungen eingesetzt werden, müssen sie hohe Anforderungen hinsichtlich Biokompatibilität,...

Im Focus: I-call - When microimplants communicate with each other / Innovation driver digitization - "Smart Health“

Microelectronics as a key technology enables numerous innovations in the field of intelligent medical technology. The Fraunhofer Institute for Biomedical Engineering IBMT coordinates the BMBF cooperative project "I-call" realizing the first electronic system for ultrasound-based, safe and interference-resistant data transmission between implants in the human body.

When microelectronic systems are used for medical applications, they have to meet high requirements in terms of biocompatibility, reliability, energy...

Im Focus: Wenn aus theoretischer Chemie Praxis wird

Thomas Heine, Professor für Theoretische Chemie an der TU Dresden, hat 2019 zusammen mit seinem Team topologische 2D-Polymere vorhergesagt. Nur ein Jahr später konnten diese Materialien von einem italienischen Forscherteam synthetisiert und deren topologische Eigenschaften experimentell nachgewiesen werden. Für die renommierte Fachzeitschrift Nature Materials war das Anlass, Thomas Heine zu einem News and Views Artikel einzuladen, der in dieser Woche veröffentlicht wurde. Unter dem Titel "Making 2D Topological Polymers a reality" beschreibt Prof. Heine, wie aus seiner Theorie Praxis wurde.

Ultradünne Materialien sind als Bausteine für nanoelektronische Bauelemente der nächsten Generation äußerst interessant, da es viel einfacher ist, Schaltungen...

Im Focus: When predictions of theoretical chemists become reality

Thomas Heine, Professor of Theoretical Chemistry at TU Dresden, together with his team, first predicted a topological 2D polymer in 2019. Only one year later, an international team led by Italian researchers was able to synthesize these materials and experimentally prove their topological properties. For the renowned journal Nature Materials, this was the occasion to invite Thomas Heine to a News and Views article, which was published this week. Under the title "Making 2D Topological Polymers a reality" Prof. Heine describes how his theory became a reality.

Ultrathin materials are extremely interesting as building blocks for next generation nano electronic devices, as it is much easier to make circuits and other...

Im Focus: Mikroroboter rollt tief ins Innere des Körpers

Mit einem Leukozyten als Vorbild haben Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme in Stuttgart einen Mikroroboter entwickelt, der in Größe, Form und Bewegungsfähigkeit einem weißen Blutkörperchen gleicht. In einem Labor simulierten sie dann ein Blutgefäß – und es gelang ihnen, den Mikroroller durch diese dynamische und dichte Umgebung zu steuern. Der Roboter hielt dem simulierten Blutfluss stand und brachte damit das Forschungsgebiet rund um die zielgenaue Medikamentenabgabe einen Schritt weiter: Es gibt keinen besseren Zugangsweg zu allen Geweben und Organen im menschlichen Körper als den Blutkreislauf.

Wissenschaftler des Max-Planck-Instituts für Intelligente Systeme (MPI-IS) in Stuttgart haben einen winzigen Mikroroboter entwickelt, der einem weißen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Dresden Nexus Conference 2020 - Gleicher Termin, virtuelles Format, Anmeldung geöffnet

19.05.2020 | Veranstaltungen

Urban Transport Conference 2020 in digitaler Form

18.05.2020 | Veranstaltungen

Erfolgreiche Premiere für das »Electrochemical Cell Concepts Colloquium«

18.05.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Künstliche Intelligenz für einen optimierten Mobilfunk

25.05.2020 | Informationstechnologie

Struktur mit dem gewissen Extra

25.05.2020 | Materialwissenschaften

Batterieforschung: Lithium kommt in Sicht

25.05.2020 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics