Doktorandenausbildung in Plasmaphysik und Fusionsforschung

Die Helmholtz-Gemeinschaft hat entschieden, eine vom Max-Planck-Institut für Plasmaphysik gemeinsam mit zwei Partneruniversitäten – der Technischen Universität München und der Ernst-Moritz-Arndt-Universität Greifswald – konzipierte Graduiertenschule mit bis zu 3,9 Millionen Euro für sechs Jahre zu fördern.

Die „International Helmholtz Graduate School for Plasma Physics“ soll die Kompetenzen der Partner zusammenführen und rund 50 Doktoranden in Garching und Greifswald eine optimale Ausbildung auf dem Gebiet der Plasmaphysik und Fusionsforschung bieten.

Die Helmholtz-Graduiertenschule für Plasmaphysik wird gemeinsam betrieben vom Max-Planck-Institut für Plasmaphysik (IPP), einem assoziierten Mitglied der Helmholtz-Gemeinschaft, sowie zwei universitären Partnern an den beiden IPP-Standorten Garching und Greifswald – der Technischen Universität München (TUM) und der Ernst-Moritz-Arndt-Universität Greifswald (EMAU). Weitere Kooperationspartner sind das Leibniz-Rechenzentrum (LRZ) in Garching und das Leibniz-Institut für Plasmaforschung und Technologie (INP) in Greifswald.

Als international sichtbare Einrichtung will die neue Graduiertenschule einen weiten Kreis exzellenter Kandidaten ansprechen. Standortübergreifend organisiert, können Synergieeffekte zur Erweiterung der Lehr- und Bildungsangebote auf dem Gebiet der Plasmaphysik genutzt werden. Künftigen Doktorandinnen und Doktoranden in Garching und Greifswald kann so eine effizient strukturierte interdisziplinäre Ausbildung auf höchstem Niveau sowie ein anregendes und vernetztes Lern- und Forschungsumfeld geboten werden.

Forschungsziel des IPP, einem der weltweit führenden Zentren für Hochtemperatur-Plasmaphysik und Fusionsforschung, ist die Entwicklung eines Kraftwerks, das nach dem Vorbild der Sonne aus der Verschmelzung leichter Atomkerne Energie gewinnt. Dazu muss es gelingen, den Brennstoff – ein dünnes, elektrisch geladenes Wasserstoffgas, ein „Plasma“ – berührungsfrei in einem Magnetfeldkäfig einzuschließen und auf Zündtemperaturen über 100 Millionen Grad aufzuheizen. In Garching wird dazu die große Tokamak-Fusionsanlage ASDEX Upgrade betrieben, in Greifswald entsteht die Stellarator-Großanlage Wendelstein 7-X. Die hier bearbeiteten Forschungsthemen decken ein weites Spektrum der modernen Plasmaphysik ab, wobei experimentelle und theoretische Untersuchungen Hand in Hand gehen. Auch allgemeine plasmaphysikalische Fragen spielen eine große Rolle, wie sie ebenso in der Niedertemperatur-Plasmaphysik und Astrophysik von Bedeutung sind. Die Beschreibung der komplexen Plasma-Phänomene nutzt zudem aufwändige Simulationen mit Höchstleistungsrechnern und stimuliert damit die enge Zusammenarbeit mit Experten der angewandten Mathematik und Informatik. Auf diese Weise ergeben sich zahlreiche Berührungspunkte mit Forschungsgebieten, auf denen die zwei Partneruniversitäten sowie die beiden anderen Kooperationspartner herausragende Kompetenzen besitzen.

Mit dem neuen System zur Doktorandenausbildung wollen die Partner die bereits laufenden Kooperationen weiter ausbauen. In Greifswald fließen dabei wertvolle Erfahrungen ein, die mit der „International Max-Planck Research School on Bounded Plasmas“ gewonnen wurden. In ihrer zehnjährigen Laufzeit wurden von IPP, EMAU und INP über 60 Doktoranden erfolgreich ausgebildet. Auch am Standort Garching existieren bereits Elemente einer systematischen Doktorandenausbildung. Die neue Helmholtz-Graduiertenschule wird eng an die „TUM Graduate School“ angebunden, die mit vielfältigen Weiterbildungs- und Netzwerkveranstaltungen die Doktorandenausbildung an der TU München unterstützt.

Max-Planck-Institut fuer Plasmaphysik (IPP)
Presse- und Oeffentlichkeitsarbeit
Boltzmannstraße 2
D-85748 Garching
Tel. 089-3299-1288
Fax 089-3299-2622

Media Contact

Isabella Milch Max-Planck-Institut

Alle Nachrichten aus der Kategorie: Bildung Wissenschaft

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer