Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neue Grundierungs-Technologie reduziert Umweltbelastungen

20.02.2006
Erster Einsatz im japanischen Toyota-Werk Takaoka

Eine Lackgrundierung, die erheblich weniger Umweltbelastungen hervorruft, hat die Toyota Motor Corporation (TMC) jetzt gemeinsam mit der Nihon Parkerzing Co. Ltd. entwickelt. Das für die Oberflächenbehandlung der Karosserie verwendete Mittel generiert weniger Abfall und schädliche metallische Nebenprodukte, als die bisher verwendeten Grundierungen und sichert gleichzeitig eine hohe Korrosionsbeständigkeit. Eingesetzt wird die neue Technologie seit Ende Januar in der Karosserie-Lackiererei des japanischen Toyota Werks Takaoka.

Bevor eine Karosserie lackiert wird, muss sie zunächst gegen Korrosion geschützt und so vorbereitet werden, dass die Lackierung anschließend gut anhaften kann. Normalerweise benutzen Automobilhersteller dafür eine Grundierung aus Zinkphosphat. Deren Abfallprodukt, ein eisenhaltiger Phosphatschlamm, wird auf Mülldeponien entsorgt. Zinkphosphate enthalten jedoch zusätzlich auch Phosphor, Nickel und Mangan, die ausgespült werden und sich dann im Abwasser des Werks wiederfinden können, was wiederum eine Reinigung notwendig macht.

Der durch die Nutzung von Zinkphosphat als Grundierung anfallende Klärschlamm und die Abwasserreinigung sind für alle Automobilhersteller ein großes und bislang unvermeidbares Problem. TMC und Parkerizing hatten daher seit dem Jahr 2000 an einer Grundierung geforscht, die diese Umweltbelastungen reduziert.

Die Anwendung konventioneller Zinkphosphate war bisher die einzige Möglichkeit, eine glatte und gleichmäßige Lackschicht auf Materialien wie Stahl, Zink oder Aluminium zu erreichen. Jenen Materialien also, die von den Automobilherstellern im Karosseriebau häufig eingesetzt werden. Der Versuch, alternative Grundierungen zu verwenden, hatte stets einen unzureichenden Korrosionsschutz zur Folge.

Die revolutionäre Technologie von Toyota und Parkerizing verzichtet auf Zinkphosphate, nutzt vielmehr Zirkonium-Verbindungen sowie spezielle organische Substanzen. Diese generieren weniger Klärschlamm und haben eine geringere Umweltbelastung zur Folge. Während der Entwicklung wurde die neue Grundierung an verschiedenen unbehandelten Materialien erprobt. Mit dem Ergebnis, dass in jedem Fall der gleiche Korrosionsschutz wie beim Einsatz von Zinkphosphaten sichergestellt wurde.

Gleichzeitig erreicht der revolutionäre Korrosionsschutz auch die gleichen oder sogar bessere Ergebnisse bei den Kriterien Lack-Anhaftung, Haltbarkeit und Glanz. Er hat daher das Potenzial, künftig die konventionelle, auf Zinkphosphaten beruhende Grundierung völlig abzulösen.

Peter Wandt | Toyota
Weitere Informationen:
http://www.toyota.de

Weitere Berichte zu: Korrosionsschutz Umweltbelastung Zinkphosphat

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Virtuelle Menschmodelle ergänzen Crashtest-Dummys
02.05.2019 | Fraunhofer-Institut für Kurzzeitmechanik, Ernst-Mach-Institut, EMI

nachricht MXT Lab: Innovationen für das autonome Fahrerlebnis - das Wohnzimmer im Auto
02.05.2019 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die verborgene Struktur des Periodensystems

Die bekannte Darstellung der chemischen Elemente ist nur ein Beispiel, wie sich Objekte ordnen und klassifizieren lassen.

Das Periodensystem der Elemente, das die meisten Chemiebücher abbilden, ist ein Spezialfall. Denn bei dieser tabellarischen Übersicht der chemischen Elemente,...

Im Focus: The hidden structure of the periodic system

The well-known representation of chemical elements is just one example of how objects can be arranged and classified

The periodic table of elements that most chemistry books depict is only one special case. This tabular overview of the chemical elements, which goes back to...

Im Focus: MPSD-Team entdeckt lichtinduzierte Ferroelektrizität in Strontiumtitanat

Mit Licht lassen sich Materialeigenschaften nicht nur messen, sondern auch verändern. Besonders interessant sind dabei Fälle, in denen eine fundamentale Eigenschaft eines Materials verändert werden kann, wie z.B. die Fähigkeit, Strom zu leiten oder Informationen in einem magnetischen Zustand zu speichern. Ein Team um Andrea Cavalleri vom Max-Planck-Institut für Struktur und Dynamik der Materie in Hamburg, hat nun Lichtimpulse aus dem Terahertz-Frequenzspektrum benutzt, um ein nicht-ferroelektrisches Material in ein ferroelektrisches umzuwandeln.

Ferroelektrizität ist ein Zustand, in dem die Atome im Kristallgitter eine bestimmte Richtung "aufzeigen" und dadurch eine makroskopische elektrische...

Im Focus: MPSD team discovers light-induced ferroelectricity in strontium titanate

Light can be used not only to measure materials’ properties, but also to change them. Especially interesting are those cases in which the function of a material can be modified, such as its ability to conduct electricity or to store information in its magnetic state. A team led by Andrea Cavalleri from the Max Planck Institute for the Structure and Dynamics of Matter in Hamburg used terahertz frequency light pulses to transform a non-ferroelectric material into a ferroelectric one.

Ferroelectricity is a state in which the constituent lattice “looks” in one specific direction, forming a macroscopic electrical polarisation. The ability to...

Im Focus: Konzert der magnetischen Momente

Forscher aus Deutschland, den Niederlanden und Südkorea haben in einer internationalen Zusammenarbeit einen neuartigen Weg entdeckt, wie die Elektronenspins in einem Material miteinander agieren. In ihrer Publikation in der Fachzeitschrift Nature Materials berichten die Forscher über eine bisher unbekannte, chirale Kopplung, die über vergleichsweise lange Distanzen aktiv ist. Damit können sich die Spins in zwei unterschiedlichen magnetischen Lagen, die durch nicht-magnetische Materialien voneinander getrennt sind, gegenseitig beeinflussen, selbst wenn sie nicht unmittelbar benachbart sind.

Magnetische Festkörper sind die Grundlage der modernen Informationstechnologie. Beispielsweise sind diese Materialien allgegenwärtig in Speichermedien wie...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Automatisiertes Fahren

17.06.2019 | Veranstaltungen

Doc Data – warum Daten Leben retten können

14.06.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - August 2019

13.06.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Neue Weizensorten bewähren sich auch unter widrigen Anbaubedingungen

17.06.2019 | Agrar- Forstwissenschaften

Inventur in der Synapse

17.06.2019 | Biowissenschaften Chemie

Zellbiologie - Qualitätskontrolle für Mitochondrien

17.06.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics