Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dieselrußfilter: Bayreuth Engine Research Center stellt neues Verfahren zur Beladungserkennung vor

03.03.2010
Kraftfahrzeuge mit Dieselmotoren müssen mit Diesel-Partikel-Filtern (DPF) ausgerüstet werden, damit sie umweltverträglich sind und keine gesundheitsschädlichen Auswirkungen haben.

Die Erkennung der Rußbeladung dieser Filter stellt bis heute eine technische Herausforderung dar. Auf dem Weg zu einer Lösung sind Ingenieurwissenschaftler der Universität Bayreuth jetzt einen wichtigen Schritt vorangekommen: Mit Hilfe von Mikrowellen lässt sich der Grad der Rußbeladung in den Filtersystemen exakt bestimmen.

Sowohl auf europäischer wie auf nationaler Ebene gibt es heute strenge Rechtsnormen zum Emissionsschutz, die nach derzeitigem Stand der Technik eine Ausrüstung von Dieselmotoren mit Diesel-Partikel-Filtern erforderlich machen. Denn Dieselabgase enthalten winzige Rußpartikel in Verbindung mit Kohlenwasserstoffen, Wasser und Aschen. Sie dringen infolge ihrer geringen Größe bis in das Lungengewebe ein und können so die menschliche Gesundheit erheblich schädigen. Der Ausstoß von Rußpartikeln kann aber durch hochwertige Diesel-Partikel-Filter erheblich reduziert werden.

Diese Filter bestehen aus keramischen Werkstoffen mit einem System winziger Poren, in denen sich die Rußpartikel festsetzen. Je mehr Partikel sie zurückhalten, umso weniger durchlässig werden sie. Dies hat zur Folge, dass der Filter im Laufe des Fahrbetriebs verstopft. Daher werden die Filter in regelmäßigen Abständen regeneriert, d.h. von den zurückgehaltenen Rußpartikeln befreit.

Kraftstoffverbrauch und Materialkosten:
Herausforderungen bei der Regeneration von Diesel-Partikel-Filtern
Für die Reinigung von Diesel-Partikel-Filtern sind in den Entwicklungsabteilungen der Automobilhersteller verschiedenartige Verfahren entwickelt worden. Diese haben jedoch - bei allen Unterschieden in den technischen Details - einen gemeinsamen Nachteil: Jede Regeneration führt zu einem erheblichen Mehrverbrauch an Kraftstoff; deutlich mehr, als wenn der Dieselmotor sich während der gleichen Zeit im normalen Fahrbetrieb befinden würde. Daher sind sowohl die Automobilhersteller als auch ihre Kunden daran interessiert, den Kraftstoffverbrauch bei der Regeneration der DPF so weit wie möglich zu senken.

Die Regeneration der Diesel-Partikel-Filter lässt sich mit umso weniger Kraftstoff durchführen, je präziser man weiß, (a) wie groß die Menge der im Filter zurückgehaltenen Rußpartikel ist und (b) wie sich diese Partikel im Kanalsystem des Filters verteilen. Diese Informationen ermöglichen über den geringeren Kraftstoffverbrauch hinaus noch in einer weiteren Hinsicht eine Kostensenkung. Derzeit werden in den Diesel-Partikel-Filtern teure Siliziumkarbide als Filtermaterialien verwendet. Denn nur sie sind in der Lage, einer Überhitzung standzuhalten, die bei der Regeneration eines Filters entstehen kann, wenn sich allzu viel Ruß im Filter angesammelt hat. Falls diese Rußbeladung aber exakt gemessen werden kann, lassen sich die Filter rechtzeitig vom Ruß befreien, und die Gefahr einer Überhitzung entfällt. Folglich können statt der kostspieligen Siliziumkarbide preisgünstigere keramische Filterwerkstoffe eingesetzt werden.

Messungen von Rußbeladungen durch Mikrowellentechnologie:
Auf dem Weg zur kostengünstigen Regeneration von Diesel-Partikel-Filtern
Wie können die Rußablagerungen im Inneren der Filter aufgespürt und gemessen werden? Die bisher entwickelten Verfahren beruhen auf der Messung des Abgasgegendrucks und sind fehleranfällig. Jetzt aber hat ein Team von Ingenieurwissenschaftlern am Bayreuth Engine Research Center (BERC), das zur Fakultät für Angewandte Naturwissenschaften (FAN) der Universität Bayreuth gehört, ein vielversprechendes Verfahren entwickelt. Es bietet präzise Informationen über die im Diesel-Filter angelagerten Rußrückstände. Das Team um die Professoren Gerhard Fischerauer und Ralf Moos hat das neue Verfahren kürzlich in der Zeitschrift "Measurement Science and Technology" vorgestellt.

Der Schlüssel zu dieser Erkundungsreise in das Innere der Diesel-Partikel-Filter ist die Mikrowellentechnologie. Bereits seit mehreren Jahrzehnten werden für Materialuntersuchungen sogenannte Hohlraumresonatoren eingesetzt. Ein solcher Resonator ist ein Hohlkörper, dessen Innenwände aus einem sehr leitfähigen Metall bestehen. Werden Mikrowellen in diesen Hohlkörper geleitet, entstehen elektromagnetische Resonanzen. Entscheidend ist nun, dass Materialproben, die in den Hohlraumresonator eingebracht werden, das Resonanzverhalten verändern: und zwar so, dass diese Änderungen präzise Rückschlüsse auf die elektrischen Eigenschaften der Materialproben erlauben.

Dieses Prinzip haben die Bayreuther Ingenieurwissenschaftler auf die Untersuchung von Diesel-Partikel-Filtern angewendet. Ein solcher Filter befindet sich in einem verbreiterten Abschnitt des Auspuffrohrs. Dieser Teil fungiert daher als Hohlraumresonator, während der Filter sozusagen die Materialprobe darstellt. Wie das Forscherteam der FAN nachweisen konnte, hängen die Resonanzeigenschaften des Systems signifikant davon ab, in welchen Mengen und an welchen Stellen sich Rußpartikel darin angesammelt haben. So hat sich beispielsweise herausgestellt, dass sich die Resonanzfrequenzen eindeutig - und zwar nahezu linear - mit der Rußbeladung des Diesel-Partikel-Filters verändern. Professor Moos ist daher im Hinblick auf die weitere Entwicklung zuversichtlich: "Unsere Forschungsergebnisse öffnen den Weg für kostengünstige Verfahren zur Regenerierung von Rußfiltern. Sowohl die Hersteller von dieselbetriebenen Kraftfahrzeugen als auch die Kunden werden davon profitieren können."

Titelaufnahme:
Gerhard Fischerauer, Martin Förster and Ralf Moos:
Sensing the soot load in automotive diesel particulate filters by microwave methods,
in: Measurement Science and Technology, 21 (2010), 035108
DOI-Bookmark: http://dx.doi.org/10.1088/0957-0233/21/3/035108
Kontaktadressen für weitere Informationen:
Prof. Dr.-Ing. Gerhard Fischerauer
- Lehrstuhl für Mess- und Regeltechnik -
Universität Bayreuth
Fakultät für Angewandte Naturwissenschaften (FAN)
95440 Bayreuth
Telefon: +49 (0) 921 - 55 - 7231
Telefax: +49 (0) 921 - 55 - 7235
E-Mail: gerhard.fischerauer@uni-bayreuth.de
Prof. Dr.-Ing. Ralf Moos
- Lehrstuhl für Funktionsmaterialien -
Universität Bayreuth
Fakultät für Angewandte Naturwissenschaften (FAN)
95440 Bayreuth
Telefon: +49 (0) 921 - 55 - 7401
Telefax: +49 (0) 921 - 55 - 7405
E-Mail: ralf.moos@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.berc.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Wichtige Schritte auf dem Weg zum automatisierten Fahren
29.03.2018 | Universität Bremen

nachricht Es wird noch heller: Innovative Leuchten in der Automobilindustrie
28.03.2018 | Technische Hochschule Nürnberg Georg Simon Ohm

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Der Roboter als „Tankwart“: TU Graz entwickelt robotergesteuertes Schnellladesystem für E-Fahrzeuge

Eine Weltneuheit präsentieren Forschende der TU Graz gemeinsam mit Industriepartnern: Den Prototypen eines robotergesteuerten CCS-Schnellladesystems für Elektrofahrzeuge, das erstmals auch das serielle Laden von Fahrzeugen in unterschiedlichen Parkpositionen ermöglicht.

Für elektrisch angetriebene Fahrzeuge werden weltweit hohe Wachstumsraten prognostiziert: 2025, so die Prognosen, wird es jährlich bereits 25 Millionen...

Im Focus: Robots as 'pump attendants': TU Graz develops robot-controlled rapid charging system for e-vehicles

Researchers from TU Graz and their industry partners have unveiled a world first: the prototype of a robot-controlled, high-speed combined charging system (CCS) for electric vehicles that enables series charging of cars in various parking positions.

Global demand for electric vehicles is forecast to rise sharply: by 2025, the number of new vehicle registrations is expected to reach 25 million per year....

Im Focus: Der „TRiC” bei der Aktinfaltung

Damit Proteine ihre Aufgaben in Zellen wahrnehmen können, müssen sie richtig gefaltet sein. Molekulare Assistenten, sogenannte Chaperone, unterstützen Proteine dabei, sich in ihre funktionsfähige, dreidimensionale Struktur zu falten. Während die meisten Proteine sich bis zu einem bestimmten Grad ohne Hilfe falten können, haben Forscher am Max-Planck-Institut für Biochemie nun gezeigt, dass Aktin komplett von den Chaperonen abhängig ist. Aktin ist das am häufigsten vorkommende Protein in höher entwickelten Zellen. Das Chaperon TRiC wendet einen bislang noch nicht beschriebenen Mechanismus für die Proteinfaltung an. Die Studie wurde im Fachfachjournal Cell publiziert.

Bei Aktin handelt es sich um das am häufigsten vorkommende Protein in höher entwickelten Zellen, das bei Prozessen wie Zellstabilisation, Zellteilung und...

Im Focus: The “TRiC” to folding actin

Proteins must be folded correctly to fulfill their molecular functions in cells. Molecular assistants called chaperones help proteins exploit their inbuilt folding potential and reach the correct three-dimensional structure. Researchers at the Max Planck Institute of Biochemistry (MPIB) have demonstrated that actin, the most abundant protein in higher developed cells, does not have the inbuilt potential to fold and instead requires special assistance to fold into its active state. The chaperone TRiC uses a previously undescribed mechanism to perform actin folding. The study was recently published in the journal Cell.

Actin is the most abundant protein in highly developed cells and has diverse functions in processes like cell stabilization, cell division and muscle...

Im Focus: Arctic Ocean 2018 - Forscher untersuchen Wolken und Meereis in der Arktis

"Arctic Ocean 2018": So heißt die diesjährige Forschungsexpedition des schwedischen Eisbrechers ODEN in der Arktis, an der auch ein Wissenschaftler der Universität Leipzig beteiligt ist. Noch bis zum 25. September wollen die etwa 40 Forscher an Bord vor allem das mikrobiologische Leben im Ozean und im Meereis untersuchen und wie es mit der Wolkenbildung in der Arktis zusammenhängt.

Während der Fahrt durch die Arktis, die Ende Juli gestartet ist, sollen im Rahmen der Kampagne MOCCHA 2018 (Microbiology-Ocean-Cloud-Coupling in the Hight...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

EEA-ESEM Konferenz findet an der Uni Köln statt

13.08.2018 | Veranstaltungen

Digitalisierung in der chemischen Industrie

09.08.2018 | Veranstaltungen

Herausforderung China – Wissenschaftler aus der ganzen Welt diskutieren miteinander auf UW/H-Tagung

03.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltkleinster Transistor schaltet Strom mit einzelnem Atom in festem Elektrolyten

13.08.2018 | Energie und Elektrotechnik

Your Smartphone is Watching You: Gefährliche Sicherheitslücken in Tracker-Apps

13.08.2018 | Informationstechnologie

Was wir von Ameisen und Amöben über Koordination und Zusammenarbeit lernen können

13.08.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics