Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Dieselrußfilter: Bayreuth Engine Research Center stellt neues Verfahren zur Beladungserkennung vor

03.03.2010
Kraftfahrzeuge mit Dieselmotoren müssen mit Diesel-Partikel-Filtern (DPF) ausgerüstet werden, damit sie umweltverträglich sind und keine gesundheitsschädlichen Auswirkungen haben.

Die Erkennung der Rußbeladung dieser Filter stellt bis heute eine technische Herausforderung dar. Auf dem Weg zu einer Lösung sind Ingenieurwissenschaftler der Universität Bayreuth jetzt einen wichtigen Schritt vorangekommen: Mit Hilfe von Mikrowellen lässt sich der Grad der Rußbeladung in den Filtersystemen exakt bestimmen.

Sowohl auf europäischer wie auf nationaler Ebene gibt es heute strenge Rechtsnormen zum Emissionsschutz, die nach derzeitigem Stand der Technik eine Ausrüstung von Dieselmotoren mit Diesel-Partikel-Filtern erforderlich machen. Denn Dieselabgase enthalten winzige Rußpartikel in Verbindung mit Kohlenwasserstoffen, Wasser und Aschen. Sie dringen infolge ihrer geringen Größe bis in das Lungengewebe ein und können so die menschliche Gesundheit erheblich schädigen. Der Ausstoß von Rußpartikeln kann aber durch hochwertige Diesel-Partikel-Filter erheblich reduziert werden.

Diese Filter bestehen aus keramischen Werkstoffen mit einem System winziger Poren, in denen sich die Rußpartikel festsetzen. Je mehr Partikel sie zurückhalten, umso weniger durchlässig werden sie. Dies hat zur Folge, dass der Filter im Laufe des Fahrbetriebs verstopft. Daher werden die Filter in regelmäßigen Abständen regeneriert, d.h. von den zurückgehaltenen Rußpartikeln befreit.

Kraftstoffverbrauch und Materialkosten:
Herausforderungen bei der Regeneration von Diesel-Partikel-Filtern
Für die Reinigung von Diesel-Partikel-Filtern sind in den Entwicklungsabteilungen der Automobilhersteller verschiedenartige Verfahren entwickelt worden. Diese haben jedoch - bei allen Unterschieden in den technischen Details - einen gemeinsamen Nachteil: Jede Regeneration führt zu einem erheblichen Mehrverbrauch an Kraftstoff; deutlich mehr, als wenn der Dieselmotor sich während der gleichen Zeit im normalen Fahrbetrieb befinden würde. Daher sind sowohl die Automobilhersteller als auch ihre Kunden daran interessiert, den Kraftstoffverbrauch bei der Regeneration der DPF so weit wie möglich zu senken.

Die Regeneration der Diesel-Partikel-Filter lässt sich mit umso weniger Kraftstoff durchführen, je präziser man weiß, (a) wie groß die Menge der im Filter zurückgehaltenen Rußpartikel ist und (b) wie sich diese Partikel im Kanalsystem des Filters verteilen. Diese Informationen ermöglichen über den geringeren Kraftstoffverbrauch hinaus noch in einer weiteren Hinsicht eine Kostensenkung. Derzeit werden in den Diesel-Partikel-Filtern teure Siliziumkarbide als Filtermaterialien verwendet. Denn nur sie sind in der Lage, einer Überhitzung standzuhalten, die bei der Regeneration eines Filters entstehen kann, wenn sich allzu viel Ruß im Filter angesammelt hat. Falls diese Rußbeladung aber exakt gemessen werden kann, lassen sich die Filter rechtzeitig vom Ruß befreien, und die Gefahr einer Überhitzung entfällt. Folglich können statt der kostspieligen Siliziumkarbide preisgünstigere keramische Filterwerkstoffe eingesetzt werden.

Messungen von Rußbeladungen durch Mikrowellentechnologie:
Auf dem Weg zur kostengünstigen Regeneration von Diesel-Partikel-Filtern
Wie können die Rußablagerungen im Inneren der Filter aufgespürt und gemessen werden? Die bisher entwickelten Verfahren beruhen auf der Messung des Abgasgegendrucks und sind fehleranfällig. Jetzt aber hat ein Team von Ingenieurwissenschaftlern am Bayreuth Engine Research Center (BERC), das zur Fakultät für Angewandte Naturwissenschaften (FAN) der Universität Bayreuth gehört, ein vielversprechendes Verfahren entwickelt. Es bietet präzise Informationen über die im Diesel-Filter angelagerten Rußrückstände. Das Team um die Professoren Gerhard Fischerauer und Ralf Moos hat das neue Verfahren kürzlich in der Zeitschrift "Measurement Science and Technology" vorgestellt.

Der Schlüssel zu dieser Erkundungsreise in das Innere der Diesel-Partikel-Filter ist die Mikrowellentechnologie. Bereits seit mehreren Jahrzehnten werden für Materialuntersuchungen sogenannte Hohlraumresonatoren eingesetzt. Ein solcher Resonator ist ein Hohlkörper, dessen Innenwände aus einem sehr leitfähigen Metall bestehen. Werden Mikrowellen in diesen Hohlkörper geleitet, entstehen elektromagnetische Resonanzen. Entscheidend ist nun, dass Materialproben, die in den Hohlraumresonator eingebracht werden, das Resonanzverhalten verändern: und zwar so, dass diese Änderungen präzise Rückschlüsse auf die elektrischen Eigenschaften der Materialproben erlauben.

Dieses Prinzip haben die Bayreuther Ingenieurwissenschaftler auf die Untersuchung von Diesel-Partikel-Filtern angewendet. Ein solcher Filter befindet sich in einem verbreiterten Abschnitt des Auspuffrohrs. Dieser Teil fungiert daher als Hohlraumresonator, während der Filter sozusagen die Materialprobe darstellt. Wie das Forscherteam der FAN nachweisen konnte, hängen die Resonanzeigenschaften des Systems signifikant davon ab, in welchen Mengen und an welchen Stellen sich Rußpartikel darin angesammelt haben. So hat sich beispielsweise herausgestellt, dass sich die Resonanzfrequenzen eindeutig - und zwar nahezu linear - mit der Rußbeladung des Diesel-Partikel-Filters verändern. Professor Moos ist daher im Hinblick auf die weitere Entwicklung zuversichtlich: "Unsere Forschungsergebnisse öffnen den Weg für kostengünstige Verfahren zur Regenerierung von Rußfiltern. Sowohl die Hersteller von dieselbetriebenen Kraftfahrzeugen als auch die Kunden werden davon profitieren können."

Titelaufnahme:
Gerhard Fischerauer, Martin Förster and Ralf Moos:
Sensing the soot load in automotive diesel particulate filters by microwave methods,
in: Measurement Science and Technology, 21 (2010), 035108
DOI-Bookmark: http://dx.doi.org/10.1088/0957-0233/21/3/035108
Kontaktadressen für weitere Informationen:
Prof. Dr.-Ing. Gerhard Fischerauer
- Lehrstuhl für Mess- und Regeltechnik -
Universität Bayreuth
Fakultät für Angewandte Naturwissenschaften (FAN)
95440 Bayreuth
Telefon: +49 (0) 921 - 55 - 7231
Telefax: +49 (0) 921 - 55 - 7235
E-Mail: gerhard.fischerauer@uni-bayreuth.de
Prof. Dr.-Ing. Ralf Moos
- Lehrstuhl für Funktionsmaterialien -
Universität Bayreuth
Fakultät für Angewandte Naturwissenschaften (FAN)
95440 Bayreuth
Telefon: +49 (0) 921 - 55 - 7401
Telefax: +49 (0) 921 - 55 - 7405
E-Mail: ralf.moos@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.berc.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Autonomes Fahren: Das hörende Auto der Zukunft
03.02.2020 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Innovatives Leichtbaukonzept im Fahrzeugbau für weniger Emissonen
13.12.2019 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

Physiker der Arbeitsgruppe von Professor Alexander Szameit an der Universität Rostock ist es in Zusammenarbeit mit Kollegen von der Universität Würzburg gelungen, einen „Trichter für Licht“ zu entwickeln, der bisher nicht geahnte Möglichkeiten zur Entwicklung von hypersensiblen Sensoren und neuen Technologien in der Informations- und Kommunikationstechnologie eröffnet. Die Forschungsergebnisse wurden jüngst im renommierten Fachblatt Science veröffentlicht.

Der Rostocker Physikprofessor Alexander Szameit befasst sich seit seinem Studium mit den quantenoptischen Eigenschaften von Licht und seiner Wechselwirkung mit...

Im Focus: Junior scientists at the University of Rostock invent a funnel for light

Together with their colleagues from the University of Würzburg, physicists from the group of Professor Alexander Szameit at the University of Rostock have devised a “funnel” for photons. Their discovery was recently published in the renowned journal Science and holds great promise for novel ultra-sensitive detectors as well as innovative applications in telecommunications and information processing.

The quantum-optical properties of light and its interaction with matter has fascinated the Rostock professor Alexander Szameit since College.

Im Focus: Künstliche Intelligenz findet das optimale Werkstoffrezept

Die möglichen Eigenschaften nanostrukturierter Schichten sind zahllos – wie aber ohne langes Experimentieren die optimale finden? Ein Team der Materialforschung der Ruhr-Universität Bochum (RUB) hat eine Abkürzung ausprobiert: Mit einem Machine-Learning-Algorithmus konnten die Forscher die strukturellen Eigenschaften einer solchen Schicht zuverlässig vorhersagen. Sie berichten in der neuen Fachzeitschrift „Communications Materials“ vom 26. März 2020.

Porös oder dicht, Säulen oder Fasern

Im Focus: Erdbeben auf Island über Telefonglasfaserkabel registriert

Am 12. März 2020, 10.26 Uhr, ereignete sich in Südwestisland, ca. 5 km nordöstlich von Grindavík, ein Erdbeben mit einer Magnitude von 4.7, während eines längeren Erdbebenschwarms. Wissenschaftlerinnen und Wissenschaftler des Deutschen GeoForschungsZentrums GFZ haben jetzt dort ein neues Verfahren zur Überwachung des Untergrunds mithilfe von Telefonglasfaserkabeln getestet.

Ein von GFZ-Forschenden aus den Sektionen „Oberflächennahe Geophysik“ und „Geoenergie“ durchgeführtes Online-Monitoring, das Glasfaserkabel des isländischen...

Im Focus: Quantenoptiker zwingen Lichtteilchen, sich wie Elektronen zu verhalten

Auf der Basis theoretischer Überlegungen von Physikern der Universität Greifswald ist es Mitarbeitern der AG Festkörperoptik um Professor Alexander Szameit an der Universität Rostock gelungen, photonische topologische Isolatoren als Lichtwellenleiter zu realisieren, in denen sich Photonen wie Elektronen verhalten, und somit fermionische Eigenschaften zeigen. Ihre Entdeckung wurde jüngst im renommierten Fachblatt „Nature Materials“ veröffentlicht.

Dass es elektronische topologische Isolatoren gibt – Festkörper die im Innern den elektrischen Strom nicht leiten, dafür aber umso besser über die Oberfläche –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

“4th Hybrid Materials and Structures 2020” findet web-basiert statt

26.03.2020 | Veranstaltungen

Wichtigste internationale Konferenz zu Learning Analytics findet statt – komplett online

23.03.2020 | Veranstaltungen

UN World Water Day 22 March: Water and climate change - How cities and their inhabitants can counter the consequences

17.03.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Weltweit einzigartig: Neue Anlage zur Untersuchung von biogener Schwefelsäurekorrosion in Betrieb

27.03.2020 | Architektur Bauwesen

Schutzmasken aus dem 3D-Drucker

27.03.2020 | Materialwissenschaften

Nachwuchswissenschaftler der Universität Rostock erfinden einen Trichter für Lichtteilchen

27.03.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics