Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Autonomes Fahren: Testfahrten deutlich reduzieren - Autokino für das Fahrzeugradar

01.04.2019

Die Sensoren autonomer Fahrzeuge müssen extrem zuverlässig sein, weil Verkehrsteilnehmer künftig nicht mehr permanent auf den Verkehr achten. Bislang werden die Sensoren in aufwendigen Testfahrten geprüft. Dank des neuen ATRIUM-Testgeräts vom Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR aber könnten sich diese Fahrten künftig zu einem großen Teil ins Labor verlagern. Denn ATRIUM gaukelt dem Radarsensor eine künstliche Szenerie vor, die den realen Bedingungen im Straßenverkehr sehr nahe kommt.

Das Auto der Zukunft fährt allein. Man wird sich wie von einem privaten Chauffeur durch die Lande fahren lassen, während man sich unterhält, die Zeitung liest oder vielleicht ein Video schaut. Doch obwohl längst Fahrassistenten wie die automatische Abstandskontrolle auf dem Markt sind, wird es noch einige Jahre dauern, bis Autos völlig autonom über die Straßen rollen.


Illustration des ATRIUM-Radarzielsimulators

© Fraunhofer FHR


Einkanalige Version des ATRIUM-Radarzielsimulators.

© Fraunhofer FHR

Denn dafür muss die Technik absolut zuverlässig sein. Dabei kommt es nicht zuletzt auf die Sensoren an, die Radarsensoren zum Beispiel, die bereits jetzt selbstständig Hindernisse erkennen und eine Vollbremsung einleiten können, wenn es eng wird. Diese Sensoren werden schon heute eingehend geprüft, ehe man sie im Auto verbaut.

Für das autonome Fahrzeug aber gelten noch einmal viel höhere Anforderungen. Denn wenn der Autofahrer nicht mehr lenkt, liegt es möglicherweise in der Verantwortung des Fahrzeugherstellers, einen Unfall zu verhindern.

Automobilhersteller legen daher in Sachen Zuverlässigkeit der Sensoren die Latte ziemlich hoch. Sie verlangen, dass diese auf Fahrtstrecken von mehreren Millionen Kilometern höchstens einen Fehler verursachen dürfen. Das bedeutet, dass heute in vielen Fällen Autos auf lange Testfahrten geschickt werden müssen.

»Das sind eine Menge Kilometer«, sagt Dr.-Ing. Thomas Dallmann, Leiter der Forschungsgruppe Aachen am Fraunhofer-Institut für Hochfrequenzphysik und Radartechnik FHR.

»Zudem müssen ja mehrere Sensoren getestet werden, um die Zuverlässigkeit statistisch nachweisen zu können. Das bedeutet, dass mehrere Testfahrzeuge mit Sensor lange unterwegs sein müssten.« Ein weiteres Problem: Tritt nach vielen Tausend Kilometern ein Fehler auf, dann muss man den Sensor nachbessern und anschließend mit den Testfahrten von vorn beginnen – ein ausgesprochen zeitraubender Prozess.

Tests ins Labor verlagern

Um diesen Aufwand zu verringern, versucht man die Realität nachzubilden, und die Tests ins Labor zu verlagern. Für Radarsensoren gibt es solche Labortests bereits. Radarsensoren funktionieren so, dass sie ein Radarsignal aussenden, das von verschiedenen Gegenständen reflektiert wird. Anhand des Echos kann die Sensorelektronik dann die Szene analysieren und messen, wie weit Objekte entfernt sind – und auch wie schnell sich ein Objekt bewegt.

Dieses Prinzip hat man bereits im Labor nachgebaut. Und zwar mithilfe sogenannter Radarzielsensoren. Diese Sensoren nehmen die vom Fahrzeugradar ausgesandten Radarstrahlen auf. Anschließend verändern sie dieses Radarsignal so, als hätte es Gegenstände getroffen – und schicken diese Information als künstliches Echobild zurück zum Auto. Der Radarzielsensor gaukelt dem Fahrzeugradar also eine künstliche Landschaft vor. Der Vorteil liegt auf der Hand: Der Testaufbau aus Autoradar und Radarzielsensor kann im Labor Tag und Nacht laufen – ohne dass dafür ein Auto auf die Reise geschickt werden muss.

Das Problem der wenigen Radarzielsensoren, die heute auf dem Markt sind, besteht darin, dass sie bei weitem keine ganze Echolandschaft generieren können. »Letztlich können die meisten nur ein sehr reduziertes Bild mit einer einstelligen Anzahl von Reflexionen erzeugen und zum Autoradar zurücksenden«, sagt Dallmann.

»Im Vergleich zur natürlichen Umgebung ist das extrem wenig.« Immerhin besteht eine echte Szenerie aus hunderten von reflektierenden Objekten: Menschen, Autos, Bäumen, Ampeln. Selbst ein einziger Verkehrsteilnehmer kann verschiedene Reflexionen an unterschiedlichen Orten erzeugen – ein PKW etwa, bei dem Stoßfänger, Räder und Seitenspiegel unterschiedlich reflektieren.

»Was das Testen von Sensoren für das autonome Fahren angeht, ist man damit noch sehr weit von einem realistischen Setting entfernt«, so der Ingenieur.

Radarzielsensor soll bis zu 300 Reflexionen generieren

Zusammen mit seinem Team entwickelt er deshalb einen neuen, leistungsfähigeren Radarzielsensor mit dem Namen ATRIUM (kurz für Automobile Testumgebung für Radar In-the-loop Untersuchungen und Messungen). Dieser kann deutlich mehr reflektierende Objekte generieren. Derzeit strebt das Fraunhofer FHR an, bis zum Projektabschluss 300 Reflexionen erzeugen zu können. Das ist enorm. »Damit kann ATRIUM dem Radarsensor im Auto eine relativ naturgetreue Szene vorspielen – das ist ein wenig wie ein Autokino für den Radarsensor.«

Die ATRIUM-Technologie ist zum Patent angemeldet, weshalb Thomas Dallmann keine Details verraten kann. Aber immerhin so viel: »Wir haben den Aufbau der Sendekanäle optimiert, wodurch diese kostengünstig aufgebaut werden können. Dadurch lassen sich die Reflexionen so darstellen, dass diese auch aus verschiedenen Richtungen auf das Radar einfallen können.« Damit könnten neue Sensoren für das autonome Fahrzeug jetzt realitätsnah und in vollem Umfang getestet werden. »Wir werden zukünftig in der Lage sein, hochkomplexe Tests laufen zu lassen, dank derer sich der Zeitaufwand von Testfahrten wesentlich reduzieren lässt.« Der Forscher und seine Kollegen werden den Labortestaufbau aus Fahrzeugradar und dem ATRIUM-Radarzielsensor während der Automotive Testing Expo vom 21. Mai bis zum 23. Mai in Stuttgart vorstellen.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2019/april/autokino-fuer...

Jens Fiege | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Technik, die stärker ist als Schlaglöcher
15.07.2019 | Technische Hochschule Ostwestfalen-Lippe

nachricht MXT Lab: Innovationen für das autonome Fahrerlebnis - das Wohnzimmer im Auto
02.05.2019 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wie sich Reibung bei topologischen Isolatoren kontrollieren lässt

Topologische Isolatoren sind neuartige Materialien, die elektrischen Strom an der Oberfläche leiten, sich im Innern aber wie Isolatoren verhalten. Wie sie auf Reibung reagieren, haben Physiker der Universität Basel und der Technischen Universität Istanbul nun erstmals untersucht. Ihr Experiment zeigt, dass die durch Reibung erzeugt Wärme deutlich geringer ausfällt als in herkömmlichen Materialien. Dafür verantwortlich ist ein neuartiger Quantenmechanismus, berichten die Forscher in der Fachzeitschrift «Nature Materials».

Dank ihren einzigartigen elektrischen Eigenschaften versprechen topologische Isolatoren zahlreiche Neuerungen in der Elektronik- und Computerindustrie, aber...

Im Focus: An ultrafast glimpse of the photochemistry of the atmosphere

Researchers at Ludwig-Maximilians-Universitaet (LMU) in Munich have explored the initial consequences of the interaction of light with molecules on the surface of nanoscopic aerosols.

The nanocosmos is constantly in motion. All natural processes are ultimately determined by the interplay between radiation and matter. Light strikes particles...

Im Focus: Shaping nanoparticles for improved quantum information technology

Particles that are mere nanometers in size are at the forefront of scientific research today. They come in many different shapes: rods, spheres, cubes, vesicles, S-shaped worms and even donut-like rings. What makes them worthy of scientific study is that, being so tiny, they exhibit quantum mechanical properties not possible with larger objects.

Researchers at the Center for Nanoscale Materials (CNM), a U.S. Department of Energy (DOE) Office of Science User Facility located at DOE's Argonne National...

Im Focus: Neuer Werkstoff für den Bootsbau

Um die Entwicklung eines Leichtbaukonzepts für Sportboote und Yachten geht es in einem Forschungsprojekt der Technischen Hochschule Mittelhessen. Prof. Dr. Stephan Marzi vom Gießener Institut für Mechanik und Materialforschung arbeitet dabei mit dem Bootsbauer Krake Catamarane aus dem thüringischen Apolda zusammen. Internationale Kooperationspartner sind Prof. Anders Biel von der schwedischen Universität Karlstad und die Firma Lamera aus Göteborg. Den Projektbeitrag der THM fördert das Bundesministerium für Wirtschaft und Energie im Rahmen des Zentralen Innovationsprogramms Mittelstand mit 190.000 Euro.

Im modernen Bootsbau verwenden die Hersteller als Grundmaterial vorwiegend Duroplasten wie zum Beispiel glasfaserverstärkten Kunststoff. Das Material ist...

Im Focus: Novel Material for Shipbuilding

A new research project at the TH Mittelhessen focusses on the development of a novel light weight design concept for leisure boats and yachts. Professor Stephan Marzi from the THM Institute of Mechanics and Materials collaborates with Krake Catamarane, which is a shipyard located in Apolda, Thuringia.

The project is set up in an international cooperation with Professor Anders Biel from Karlstad University in Sweden and the Swedish company Lamera from...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung trifft Energiewende

15.10.2019 | Veranstaltungen

Bauingenieure im Dialog 2019: Vorträge stellen spannende Projekte aus dem Spezialtiefbau vor

15.10.2019 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2019

14.10.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Sensorschleuse Argus von dormakaba mit ICONIC Award 2019 ausgezeichnet

15.10.2019 | Förderungen Preise

Rezeptorkomplexe am Fließband

15.10.2019 | Biowissenschaften Chemie

Quantenbits ins Glasfasernetz bringen: Start des Projekts QFC-4-1QID

15.10.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics