Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Airbag im Röntgenblitz

08.05.2006
Das Entscheidende spielt sich oft rasend schnell und im Verborgenen ab. Das Zünden eines Airbags beispielsweise dauert nur 150 Millisekunden. Mit Röntgen-Kinematografie lassen sich solche Prozesse erstmals sichtbar machen.

Ein Lidschlag und es ist vorbei. Sensoren registrieren den Aufprall, der Airbag zündet, bläst sich auf und fällt wieder zusammen. 150 Millisekunden. Maximal. Was in dieser Zeit passiert, ist bestens dokumentiert. Zumindest der sichtbare Teil. Die ersten zehn bis zwanzig Millisekunden, in denen der Airbag gezündet wird und beginnt sich zu entfalten, spielen sich jedoch im Verborgenen ab. Von dieser kritischen Phase existierten bis vor kurzem bestenfalls Einzelbilder - pro Airbag-Zündung ein Bild. Das Problem dabei: "Von nur einem Bild kann man nicht auf den gesamten Ablauf schließen", stellt Philip Helberg vom Fraunhofer-Institut für Kurzzeitdynamik, dem Ernst-Mach-Institut EMI in Efringen-Kirchen, fest. Er und seine Kollegen haben ein Verfahren entwickelt, mit dem man den gesamten Ablauf sichtbar machen kann: Mit Röntgen-Kinematografie, die auf der Röntgenblitztechnik aufbaut, erstellt er ganze Bildserien mit extrem kurzen Bildabständen von minimal zehn Mikrosekunden, rein rechnerisch 100 000 Bilder pro Sekunde. Aufgrund der aktuell verfügbaren Röntgenquellen ist man auf acht Bilder beschränkt.


Airbagzündung mit anschließender Luftsackentfaltung und Klappenöffnung. Röntgen-Kinematografie-Bilder zu zwei ausgewählten Zeitpunkten. © Fraunhofer EMI


Airbagzündung mit anschließender Luftsackentfaltung und Klappenöffnung. Röntgen-Kinematografie-Bilder zu zwei ausgewählten Zeitpunkten. © Fraunhofer EMI

Den Ingenieuren genügen die acht Bilder. "Um das Zünden eines Airbags zu untersuchen, ist eine Auflösung von 1 000 Bildern pro Sekunde ausreichend", sagt Helberg. Die Bildserie beginnt etwa fünf Millisekunden nach dem Auslösen des Airbags und ist nach weiteren acht Bildern und Millisekunden abgeschlossen. Mit Hilfe der Aufnahmen können die Hersteller von Airbags jetzt herausfinden, wie die Luftsäcke im Gehäuse verstaut werden müssen, damit sie sich optimal entfalten.

Die Röntgen-Kinematografie der Fraunhofer-Forscher liefert, dank einer nur 20 Nanosekunden kurzen Belichtungszeit, gestochen scharfe Bilder. "Diese Qualität ist bisher einzigartig", freut sich Helberg. Für die Aufnahme der Bildserien benutzt er eine ausgetüftelte Aufnahmetechnik: Die Röntgenblitze durchstrahlen das zu untersuchende Objekt - beispielsweise den Airbag - aus einer Richtung. Der Anteil der Strahlung, der nicht absorbiert wird, trifft auf eine Fluoreszenzfolie auf der gegenüberliegenden Seite und bringt diese zum Leuchten - allerdings nur 1,6 Mikrosekunden lang, eine Zeitspanne, die mit bloßem Auge nicht wahrnehmbar ist. Doch die CCD-Kameras auf der Rückseite der Folie registrieren diese Bilder. Auf diese Weise wird sichtbar, was dem menschlichen Auge verborgen bleibt.

Marion Horn | Fraunhofer-Gesellschaft
Weitere Informationen:
http://www.fraunhofer.de/fhg/press/pi/2006/05/Mediendienst52006Thema6.jsp

Weitere Berichte zu: Airbag Röntgen-Kinematografie Röntgenblitz

Weitere Nachrichten aus der Kategorie Automotive:

nachricht Autonomes Fahren: Das hörende Auto der Zukunft
03.02.2020 | Fraunhofer-Institut für Digitale Medientechnologie IDMT

nachricht Innovatives Leichtbaukonzept im Fahrzeugbau für weniger Emissonen
13.12.2019 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

Alle Nachrichten aus der Kategorie: Automotive >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente menschliche Organe ermöglichen dreidimensionale Kartierungen auf Zellebene

Erstmals gelang es Wissenschaftlerinnen und Wissenschaftlern, intakte menschliche Organe durchsichtig zu machen. Mittels mikroskopischer Bildgebung konnten sie die zugrunde liegenden komplexen Strukturen der durchsichtigen Organe auf zellulärer Ebene sichtbar machen. Solche strukturellen Kartierungen von Organen bergen das Potenzial, künftig als Vorlage für 3D-Bioprinting-Technologien zum Einsatz zu kommen. Das wäre ein wichtiger Schritt, um in Zukunft künstliche Alternativen als Ersatz für benötigte Spenderorgane erzeugen zu können. Dies sind die Ergebnisse des Helmholtz Zentrums München, der Ludwig-Maximilians-Universität (LMU) und der Technischen Universität München (TUM).

In der biomedizinischen Forschung gilt „seeing is believing“. Die Entschlüsselung der strukturellen Komplexität menschlicher Organe war schon immer eine große...

Im Focus: Skyrmions like it hot: Spin structures are controllable even at high temperatures

Investigation of the temperature dependence of the skyrmion Hall effect reveals further insights into possible new data storage devices

The joint research project of Johannes Gutenberg University Mainz (JGU) and the Massachusetts Institute of Technology (MIT) that had previously demonstrated...

Im Focus: Skyrmionen mögen es heiß – Spinstrukturen auch bei hohen Temperaturen steuerbar

Neue Spinstrukturen für zukünftige Magnetspeicher: Die Untersuchung der Temperaturabhängigkeit des Skyrmion-Hall-Effekts liefert weitere Einblicke in mögliche neue Datenspeichergeräte

Ein gemeinsames Forschungsprojekt der Johannes Gutenberg-Universität Mainz (JGU) und des Massachusetts Institute of Technology (MIT) hat einen weiteren...

Im Focus: Making the internet more energy efficient through systemic optimization

Researchers at Chalmers University of Technology, Sweden, recently completed a 5-year research project looking at how to make fibre optic communications systems more energy efficient. Among their proposals are smart, error-correcting data chip circuits, which they refined to be 10 times less energy consumptive. The project has yielded several scientific articles, in publications including Nature Communications.

Streaming films and music, scrolling through social media, and using cloud-based storage services are everyday activities now.

Im Focus: Nanopartikel können Zellen verändern

Nanopartikel dringen leicht in Zellen ein. Wie sie sich dort verteilen und was sie bewirken, zeigen nun erstmals hochaufgelöste 3D-Mikroskopie-Aufnahmen an BESSY II. So reichern sich bestimmte Nanopartikel bevorzugt in bestimmten Organellen der Zelle an. Dadurch kann der Energieumsatz in der Zelle steigen. „Die Zelle sieht aus wie nach einem Marathonlauf, offensichtlich kostet es Energie, solche Nanopartikel aufzunehmen“, sagt Hauptautor James McNally.

Nanopartikel sind heute nicht nur in Kosmetikprodukten, sondern überall, in der Luft, im Wasser, im Boden und in der Nahrung. Weil sie so winzig sind, dringen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Chemnitzer Linux-Tage am 14. und 15. März 2020: „Mach es einfach!“

12.02.2020 | Veranstaltungen

4. Fachtagung Fahrzeugklimatisierung am 13.-14. Mai 2020 in Stuttgart

10.02.2020 | Veranstaltungen

Alternative Antriebskonzepte, technische Innovationen und Brandschutz im Schienenfahrzeugbau

07.02.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Flexibles Fügen und wandlungsfähige Prozessketten: der Schlüssel für effiziente Produktion

17.02.2020 | Interdisziplinäre Forschung

AgiloBat: Batteriezellen flexibel produzieren

17.02.2020 | Energie und Elektrotechnik

Nierenkrebs an der Wurzel packen

17.02.2020 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics