Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Überwachung von Brücken mit Profil-Laserscannern

15.02.2019

Tragwerke von Ingenieurbauwerken wie zum Beispiel Brücken müssen regelmäßig überprüft werden. Dies ist oft mit erheblichem technischen und personellen Aufwand verbunden. Ein Forscherteam der TU Darmstadt hat ein Monitoring-Verfahren entwickelt, mit dem ganze Brückenprofile berührungslos mit Profil-Laserscannern erfasst und überwacht werden können.

In Deutschland gibt es weit über 100.000 Brücken – davon allein rund 40.000 Brücken an Autobahnen und Bundesstraßen und circa 25.000 an Eisenbahnlinien. Um die Tragfähigkeit und Dauerhaftigkeit der Bauwerke sicherzustellen, müssen sie in bestimmten Intervallen untersucht werden. Viele der Brücken haben ihre Alters- und, aufgrund des stark angestiegenen Verkehrsaufkommens, auch ihre Belastungsgrenze erreicht. Sie müssen daher besonders überwacht werden – eine Herausforderung für ihre Betreiber.


Profilscanner unter Eisenbahnbrücke

Florian Schill / TU Darmstadt


Profilscanner während eines Belastungsversuchs an einer historischen Mauerwerksbrücke

Florian Schill / TU Darmstadt

Überwachungs-Messungen an Brücken erfolgen bislang taktil, da heißt, am zu prüfenden Bauwerk müssen Sensoren angebracht und nach erfolgter Messung wieder demontiert werden. Oftmals führt das zu Sperrungen von Straßen und Bahnlinien oder Behinderungen des Verkehrs. Die lastbedingten Deformationen werden zudem nur punktuell an den mit Sensoren versehenen Stellen erfasst. „Um die hohe und steigende Zahl an Überwachungsaufgaben effizient bewältigen zu können, ist ein modernes und praktikables System erforderlich“, sagt Professor Andreas Eichhorn vom Fachgebiet Geodätische Messsysteme und Sensorik (GMSS) der TU Darmstadt.

Wissenschaftler und Wissenschaftlerinnen vom Fachgebiet GMSS haben daher Brückenmessungen mit einem Profil-Laserscanner durchgeführt. Damit ist es möglich, statische und dynamische Deformationen (zum Beispiel Durchbiegungen) einer Brücke in Zehntel-Millimeter-Genauigkeit nicht nur für einzelne Punkte, sondern für komplette Profile zu ermitteln. Die Messung erfolgt berührungslos, somit können auch bisher unzugängliche Stellen von Bauwerken erfasst werden. Als Ergebnis liegen für die gesamte Länge eines Brückenprofils Messwerte vor, die zeigen, wie sich das Tragwerk im Ruhezustand verhält, wie stark es sich bei Belastung verformt und ob diese Deformationen noch innerhalb tolerierbarer Grenzen liegen. Messung und Auswertung erfolgen dabei weitgehend automatisiert.
Die so gewonnenen Messwerte besitzen eine leicht höhere Messunsicherheit als jene mit konventionellen Verfahren ermittelten Daten. Trotzdem ist diese Methode ausreichend, um typische Tragwerksdeformationen zuverlässig zu erfassen und den Zustand der Brücken zu bewerten.

Das notwendige Mess- und Auswertekonzept hat Dr.-Ing. Florian Schill im Rahmen seiner Promotion am GMSS erarbeitet. Das Messsystem basiert auf einem Z+F Profiler Laserscanner. Dabei handelt es sich um einen nach dem Phasenmessprinzip arbeitenden Profilscanner, dessen Haupteinsatzgebiet im Bereich der mobilen Straßenraumerfassung liegt. Die Anwendung zur Überwachung von Tragwerken stellt eine Umkehrung dieses Einsatzzweckes dar, da hier von einer statischen Plattform aus ein sich bewegendes Messobjekt abgetastet wird. Dazu wird der Laserstrahl in einer Richtung über das Messobjekt geführt, und zwar mit einer Wiederholrate von bis zu 200 Hertz. Die maximale Messentfernung beträgt dabei rund 120 Meter, bei einer maximalen Datenaufnahmerate von einer Million Punkte pro Sekunde.

Auch andere Bauwerke, wie zum Beispiel Windenergieanlagen, Lärmschutzwände und Fabrikhallen wurden vom Fachgebiet GMSS bereits mit dem vorgestellten Profil-Laserscanner überwacht. Durch die hohe Abtastrate des Scanners können dynamische Bauwerksparameter, wie zum Beispiel Eigenfrequenzen oder auch Dämpfungsmaße, erfasst werden.
Wie „artfremde“ Technik zur Brückenüberwachung ebenfalls eingesetzt werden kann, wurde in einem weiteren Projekt an der TU erforscht. Hierzu stellte ein Team um Professor Matthias Becker vom Fachgebiet Physikalische Geodäsie und Satellitengeodäsie fest, dass Lageabweichungen von Bauwerken auch mit Mikrowellen erfasst werden können – mit einer Methode, die sonst für die Überwachung von instabilen Hängen eingesetzt wird.

„Profil-Laserscanner bieten eine neue und sichere Möglichkeit für die Überwachung von Tragwerken“, fasst Eichhorn die neue Technik zusammen. „Durch den reduzierten Aufwand ist eine deutliche Effizienzsteigerung und die wirtschaftliche Überwachung von Brücken möglich.“

Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland. Sie verbindet vielfältige Wissenschaftskulturen zu einem charakteristischen Profil. Ingenieur- und Naturwissenschaften bilden den Schwerpunkt und kooperieren eng mit prägnanten Geistes- und Sozialwissenschaften. Weltweit stehen wir für herausragende Forschung in unseren hoch relevanten und fokussierten Profilbereichen: Cybersecurity, Internet und Digitalisierung, Kernphysik, Energiesysteme, Strömungsdynamik und Wärme- und Stofftransport, Neue Materialien für Produktinnovationen. Wir entwickeln unser Portfolio in Forschung und Lehre, Innovation und Transfer dynamisch, um der Gesellschaft kontinuierlich wichtige Zukunftschancen zu eröffnen. Daran arbeiten unsere 312 Professorinnen und Professoren, 4.450 wissenschaftlichen und administrativ-technischen Mitarbeiterinnen und Mitarbeiter sowie knapp 26.000 Studierenden. Mit der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz bildet die TU Darmstadt die strategische Allianz der Rhein-Main-Universitäten.

MI-Nr. 09/2019, cst


Wissenschaftliche Ansprechpartner:

Professor Dr.-Ing. Andreas Eichhorn
Fachbereich Bau- und Umweltingenieurwissenschaften
Institut für Geodäsie, FG Geodätische Messsysteme und Sensorik
Tel.: 06151/16-21917
E-Mail: eichhorn@geod.tu-darmstadt.de

Silke Paradowski | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Photovoltaik in Gebäudehüllen: Von der Nische zum Massenmarkt
13.03.2019 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Smartes Energiemanagement im Eigenheim
05.03.2019 | Technische Hochschule Nürnberg Georg Simon Ohm

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Im Focus: Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt

TWINCORE-Forscher entschlüsseln, wie der Transport von Antigenfragmenten auf die Oberfläche von Immunzellen des Menschen reguliert wird

Dendritische Zellen sind die Wächter unserer Immunabwehr. Sie lauern fremden Eindringlingen auf, schlucken sie, zerlegen sie in Bruchstücke und präsentieren...

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Mikroboote

21.03.2019 | Physik Astronomie

Protein BRCA1 als Stress-Coach

21.03.2019 | Biowissenschaften Chemie

Möglicher Ur-Stoffwechsel in Bakterien entdeckt

21.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics