Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trick der Orchidee: TU-Wissenschaftler entwickeln innovativen Sonnenschutz mit textilen Gelenken

04.07.2019

Wissenschaftler der TU Darmstadt haben einen innovativen, variablen Sonnenschutz entwickelt, der die Vorteile von Textilrollos und Jalousien vereint und gleichzeitig auch zur Lichtlenkung genutzt werden kann. Orchideenblüten lieferten das Vorbild für das neue System.

Am Anfang stand der Blick durchs Mikroskop. Marvin Kehl, wissenschaftlicher Mitarbeiter am Institut für Konstruktives Gestalten und Baukonstruktion am Fachbereich Bau- und Umweltingenieur-wissenschaften der TU, studierte bestimmte Orchideenblüten und war fasziniert von den leichtgängigen und rückfedernden Gelenken der Blütenblätter. Wie könnte man diesen Effekt in das Bauwesen übertragen?


Makroaufnahme des Prototypen des innovativen Sonnenschutzes: Durch Spannung entstehen Öffnungen, die Licht durchlassen.

TU Darmstadt/Sandra Junker


Professor Stefan Schäfer demonstriert am Prototypen, wie der innovative Sonnenschutz funktioniert. Durch Auseinanderziehen des Stoffs entstehen Öffnungen, die Licht durchlassen.

TU Darmstadt/Sandra Junker

Bald ergab sich eine Lösung: Das Prinzip lässt sich auf bestimmte Werkstoffe übertragen, zum Beispiel auf Stoff.

Am Ende vieler Tests und Versuche steht nun ein innovativer, variabler Sonnenschutz. Dafür wird eine Stofffläche im Lasercutting-Verfahren mit einem optimierten Muster aus kleinen, zueinander versetzten Kurven perforiert, die von der Form her an Zungen erinnern.

Wird nun die gesamte Stoffbahn unter Zug genommen und gestreckt, klappen die so erzeugten „Gelenke“ auf, die Stoffzungen wölben sich dreidimensional nach einer Seite auf, und es entstehen gleichförmige Öffnungen. Die Größe der Öffnungen geht dabei mit der Höhe der Zugkraft einher. Sie lassen auch bei geschlossenem Sonnenschutzrollo genug Licht ins Zimmer, ohne dass es innen zu einer Blendung kommt.

Durch unterschiedlich starken Zug lässt sich die Lichtmenge, die das Rollo durchlässt, im Gegensatz zu herkömmlichen, flächigen Textilrollos stufenlos regulieren. Zudem werden Blendeffekte zuverlässiger ausgeschaltet. Die Schnittmuster sind dabei variabel. Dreht man sie etwa im oberen Teil des Rollos um 180 Grad, bilden sich bei Zugspannung dort kleine „Kelche“, die Tageslicht gezielt von außen in den Raum leiten können und auch dunklere Innenbereiche mit natürlichem Licht versorgen – während trotzdem der Blendschutz in Fensternähe gewährleistet ist.

Gegenüber herkömmlichen, starren Lamellen-Jalousien hat der neue Sonnenschutz aus perforierten Textilien zudem den Vorteil, dass er einfacher konstruiert ist, weniger Bauteile benötigt und geringerer mechanischer Verschleiß auftritt.

„Sonnen- und Blendschutz sind in unseren Breiten Zukunftsfragen im Bauwesen“, sagt Professor Stefan Schäfer, Leiter des Instituts für Konstruktives Gestalten und Baukonstruktion, der die Entwicklung des innovativen textilen Sonnenschutzes mitgetragen hat.

„Trotz extremer jahreszeitlicher Schwankungen müssen sich die Menschen in den Gebäuden jederzeit wohlfühlen.“ So entstand unmittelbar die Idee, die mit bionisch-inspirierten Gelenken versehenen Textilien zu diesem Zweck nutzbar zu machen.

Die neue Technologie wurde durch das Referat Forschungstransfer der TU Darmstadt mit Unterstützung der Wissenschaftler zum internationalen Patent angemeldet. Ein Prototyp überzeugte auf Messen Expertinnen und Experten aus der Sonnenschutz-Branche. Zurzeit sind die Wissenschaftler auf der Suche nach Industriepartnern, um den Sonnenschutz zur Anwendung zu bringen.

Internet:
https://bit.ly/2Ra3JLM

Kontakt:
Professor Stefan Schäfer
Fachbereich Bau- und Umweltingenieurwissenschaften
Institut für Konstruktives Gestalten und Baukonstruktion
Tel.: 06151/16-21380
E-Mail: sts@kgbauko.tu-darmstadt.de

Über die TU Darmstadt
Die TU Darmstadt zählt zu den führenden Technischen Universitäten in Deutschland. Sie verbindet vielfältige Wissenschaftskulturen zu einem charakteristischen Profil. Ingenieur- und Naturwissenschaften bilden den Schwerpunkt und kooperieren eng mit prägnanten Geistes- und Sozialwissenschaften. Weltweit stehen wir für herausragende Forschung in unseren hoch relevanten und fokussierten Profilbereichen: Cybersecurity, Internet und Digitalisierung, Kernphysik, Energiesysteme, Strömungsdynamik und Wärme- und Stofftransport, Neue Materialien für Produktinnovationen. Wir entwickeln unser Portfolio in Forschung und Lehre, Innovation und Transfer dynamisch, um der Gesellschaft kontinuierlich wichtige Zukunftschancen zu eröffnen. Daran arbeiten unsere 312 Professorinnen und Professoren, 4.450 wissenschaftlichen und administrativ-technischen Mitarbeiterinnen und Mitarbeiter sowie knapp 26.000 Studierenden. Mit der Goethe-Universität Frankfurt und der Johannes Gutenberg-Universität Mainz bildet die TU Darmstadt die strategische Allianz der Rhein-Main-Universitäten.

www.tu-darmstadt.de 

MI-Nr. 52/2019, sip

Weitere Informationen:

https://bit.ly/2Ra3JLM

Silke Paradowski | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht TU Graz-Forschende wollen Betondiagnostik fundamental verbessern
29.06.2020 | Technische Universität Graz

nachricht Faser-Metall-Laminate mit kompostierbaren Biomaterialien für den ökologischen Leichtbau
26.06.2020 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

Ein internationales Team von Wissenschaftern aus Österreich, Deutschland und der Ukraine hat ein neues supraleitendes System gefunden, in dem sich magnetische Flussquanten mit Geschwindigkeiten von 10-15 km/s bewegen können. Dies erschließt Untersuchungen der reichen Physik nichtlinearer kollektiver Systeme und macht einen Nb-C-Supraleiter zu einem idealen Materialkandidaten für Einzelphotonen-Detektoren. Die Ergebnisse sind in Nature Communications veröffentlicht.

Supraleitung ist ein physikalisches Phänomen, das bei niedrigen Temperaturen in vielen Materialien auftritt und das sich durch einen verschwindenden...

Im Focus: Elektronen auf der Überholspur

Solarzellen auf Basis von Perowskitverbindungen könnten bald die Stromgewinnung aus Sonnenlicht noch effizienter und günstiger machen. Bereits heute übersteigt die Labor-Effizienz dieser Perowskit-Solarzellen die der bekannten Silizium-Solarzellen. Ein internationales Team um Stefan Weber vom Max-Planck-Institut für Polymerforschung (MPI-P) in Mainz hat mikroskopische Strukturen in Perowskit-Kristallen gefunden, die den Ladungstransport in der Solarzelle lenken können. Eine geschickte Ausrichtung dieser „Elektronen-Autobahnen“ könnte Perowskit-Solarzellen noch leistungsfähiger machen.

Solarzellen wandeln das Licht der Sonne in elektrischen Strom um. Dabei wird die Energie des Lichts von den Elektronen des Materials im Inneren der Zelle...

Im Focus: Electrons in the fast lane

Solar cells based on perovskite compounds could soon make electricity generation from sunlight even more efficient and cheaper. The laboratory efficiency of these perovskite solar cells already exceeds that of the well-known silicon solar cells. An international team led by Stefan Weber from the Max Planck Institute for Polymer Research (MPI-P) in Mainz has found microscopic structures in perovskite crystals that can guide the charge transport in the solar cell. Clever alignment of these "electron highways" could make perovskite solar cells even more powerful.

Solar cells convert sunlight into electricity. During this process, the electrons of the material inside the cell absorb the energy of the light....

Im Focus: Das leichteste elektromagnetische Abschirmmaterial der Welt

Empa-Forschern ist es gelungen, Aerogele für die Mikroelektronik nutzbar zu machen: Aerogele auf Basis von Zellulose-Nanofasern können elektromagnetische Strahlung in weiten Frequenzbereichen wirksam abschirmen – und sind bezüglich Gewicht konkurrenzlos.

Elektromotoren und elektronische Geräte erzeugen elektromagnetische Felder, die bisweilen abgeschirmt werden müssen, um benachbarte Elektronikbauteile oder die...

Im Focus: The lightest electromagnetic shielding material in the world

Empa researchers have succeeded in applying aerogels to microelectronics: Aerogels based on cellulose nanofibers can effectively shield electromagnetic radiation over a wide frequency range – and they are unrivalled in terms of weight.

Electric motors and electronic devices generate electromagnetic fields that sometimes have to be shielded in order not to affect neighboring electronic...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Internationale Konferenz QuApps zeigt Status Quo der Quantentechnologie

02.07.2020 | Veranstaltungen

Virtuelles Meeting mit dem BMBF: Medizintechnik trifft IT auf der DMEA sparks 2020

17.06.2020 | Veranstaltungen

Digital auf allen Kanälen: Lernplattformen, Learning Design, Künstliche Intelligenz in der betrieblichen Weiterbildung, Chatbots im B2B

17.06.2020 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Der sechste Sinn der Tiere: Ein Frühwarnsystem für Erdbeben?

03.07.2020 | Biowissenschaften Chemie

Effizient, günstig und ästhetisch: 
Forscherteam baut Elektroden aus Laubblättern

03.07.2020 | Energie und Elektrotechnik

Ein neuer Weg zur superschnellen Bewegung von Flussschläuchen in Supraleitern entdeckt

03.07.2020 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics