Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Selbstabdunkelnde Fensterscheiben in großer Farbvielfalt

01.02.2017

Elektrochrome Gläser dunkeln automatisch ab, wenn die Sonne vom Himmel brennt, und halten die Wärme draußen. Bislang gibt es sie jedoch nur in der Farbe Blau, auch die Schaltzeiten sind lang. Mit einem neuen Verfahren lassen sich erstmalig auch andersfarbige Scheiben herstellen. Zudem schalten sie etwa zehnmal schneller als bisherige Modelle.

Wenn sich die Dunkelheit bereits nachmittags übers Land senkt, ist man im Winter froh über jeden Sonnenstrahl. An heißen Sommertagen dagegen könnte man auf den Wärmeeintrag verzichten, den die Sonne ins Büro bringt. Elektrochrome Scheiben schaffen Abhilfe: Ist es draußen eher dunkel, sind sie transparent und lassen Licht und Wärme durch. Knallt dagegen die Sonne vom Himmel, können die Fenster abgedunkelt werden, so dass ein Großteil der Hitze draußen bleibt. Diese Scheiben schimmern in schönem Blau. In anderen Farben sind sie bislang nicht erhältlich.


Organische Monomere, in ein spezielles Gießharz gemischt, verdunkeln das Fensterglas.

© Fraunhofer IAP

Schnelle Schaltzeiten

Forscher des Fraunhofer-Instituts für Angewandte Polymerforschung IAP in Potsdam-Golm haben eine neue Herstellungsmethode für solche elektrochromen Glasscheiben entwickelt – gemeinsam mit der TILSE FORMGLAS GmbH. Gefördert wird das Projekt vom Bundesministerium für Wirtschaft BMWi. »Wir können zum einen Glasscheiben mit einer großen Farbvielfalt herstellen, zum anderen erreichen wir deutlich schnellere Schaltzeiten als bei bisherigen Modellen«, sagt Dr. Volker Eberhardt, Wissenschaftler am IAP.

Das Prinzip der elektrochromen Scheiben: Üblicherweise verwenden Hersteller Glas, das mit lichtdurchlässigen Indium-Zinn-Oxid oder dem kostengünstigeren Fluor-Zinn-Oxid beschichtet ist. Durch diese Beschichtung wird das Glas elektrisch leitfähig. Für eine intelligente Fensterscheibe sind zwei solcher Glasscheiben erforderlich. Auf eine der beiden wird noch eine weitere Schicht aufgedampft, das elektrochrome Wolframoxid. Die Gläser werden mit den beschichteten Seiten aufeinander gelegt, ein gelartiger Elektrolyt verbindet sie. Legt man eine Spannung an das Glas an, verdunkelt sich die Wolframoxidbeschichtung. Durch Umkehrung der Polung hellt sie sich auf. Dies dauert jedoch lange – vor allem bei großen Scheiben von zwei bis drei Quadratmetern können 15 bis 20 Minuten vergehen, eh sie vollständig abgedunkelt sind.

Organische Monomere sorgen für den Abdunkelungseffekt

Die Forscher am IAP setzen auf eine andere Technologie, um die Scheiben abzudunkeln. »Wir nutzen organische Monomere, die wir in ein speziell entwickeltes Gießharz mischen«, sagt Eberhardt. Wie beim bisherigen Verfahren nutzen die Forscher als Ausgangssubstrat zinnoxidbeschichtete Glasscheiben. Sie verzichten allerdings auf eine weitere Beschichtung. Stattdessen legen sie die Scheiben mit der Zinnoxidbeschichtung aufeinander, füllen das Gießharz samt den elektrochromen Molekülen in den entstehenden Hohlraum und härten das Harz über Hitze oder UV-Strahlung aus.

Nun legen die Wissenschaftler eine Gleichspannung an: Dies führt dazu, dass sich die Monomere auf einer der Elektroden zu einem elektrochromen Polymer verbinden. Bei einer deutlich geringeren Spannung lässt sich die Scheibe dann schalten. Der organische Farbgeber hat verschiedene Vorteile. Zum einen lassen sich durch die Wahl anderer Monomere künftig auch rote oder lila Scheiben verbauen. Zum anderen reagieren diese deutlich schneller. »Eine 1,2 Quadratmeter große Scheibe abzudunkeln, dauert nur etwa 20 bis 30 Sekunden. Klassische Wolframoxid-basierende elektrochrome Systeme würden dafür sicherlich zehn Minuten brauchen«, konkretisiert Eberhardt.

Sichere und stabile Scheiben

Auch die Stabilität der Scheiben spricht für das neue Verfahren. »Wir haben die Stabilität unserer elektrochromen Scheiben entsprechend geltender DIN-Normen testen lassen: Bereits ein Verbund aus zwei Scheiben reicht aus, um eine Überkopf-Verglasung oder begehbare Scheiben zu realisieren. Bisher brauchte man dazu einen Vielfach-Glas-Verbund«, so Eberhardt. Das heißt: Mit dem speziellen Gießharz lassen sich zum einen Materialkosten sparen, da man statt drei oder vier Scheiben nur zwei braucht, zum anderen kann man diese erstmalig auch elektrochrom schalten. Auch für den Schiffsbau sind die Gläser stabil genug. Einen Prototyp der elektrochromen Gießharz-Verglasung gibt es bereits, er schaltet momentan in der Farbe Blau. Im nächsten Schritt realisieren die Forscher andere Farben, etwa Rot.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2017/februar/selbstabdun...

Dr. rer. nat. Sandra Mehlhase | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Die Berge im Wohnzimmer
08.08.2018 | Bau-Fritz GmbH & Co. KG, seit 1896

nachricht Bei der Planung von Gebäuden an die Sommerhitze denken
07.08.2018 | Technische Universität Wien

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Farbeffekte durch transparente Nanostrukturen aus dem 3D-Drucker

Neues Design-Tool erstellt automatisch 3D-Druckvorlagen für Nanostrukturen zur Erzeugung benutzerdefinierter Farben | Wissenschaftler präsentieren ihre Ergebnisse diese Woche auf der angesehenen SIGGRAPH-Konferenz

Die meisten Objekte im Alltag sind mit Hilfe von Pigmenten gefärbt, doch dies hat einige Nachteile: Die Farben können verblassen, künstliche Pigmente sind oft...

Im Focus: Color effects from transparent 3D-printed nanostructures

New design tool automatically creates nanostructure 3D-print templates for user-given colors
Scientists present work at prestigious SIGGRAPH conference

Most of the objects we see are colored by pigments, but using pigments has disadvantages: such colors can fade, industrial pigments are often toxic, and...

Im Focus: Eisen und Titan in der Atmosphäre eines Exoplaneten entdeckt

Forschende der Universitäten Bern und Genf haben erstmals in der Atmosphäre eines Exoplaneten Eisen und Titan nachgewiesen. Die Existenz dieser Elemente in Gasform wurde von einem Team um den Berner Astronomen Kevin Heng theoretisch vorausgesagt und konnte nun von Genfern Astronominnen und Astronomen bestätigt werden.

Planeten in anderen Sonnensystemen, sogenannte Exoplaneten, können sehr nah um ihren Stern kreisen. Wenn dieser Stern viel heisser ist als unsere Sonne, dann...

Im Focus: Magnetische Antiteilchen eröffnen neue Horizonte für die Informationstechnologie

Computersimulationen zeigen neues Verhalten von Antiskyrmionen bei zunehmenden elektrischen Strömen

Skyrmionen sind magnetische Nanopartikel, die als vielversprechende Kandidaten für neue Technologien zur Datenspeicherung und Informationsverarbeitung gelten....

Im Focus: Unraveling the nature of 'whistlers' from space in the lab

A new study sheds light on how ultralow frequency radio waves and plasmas interact

Scientists at the University of California, Los Angeles present new research on a curious cosmic phenomenon known as "whistlers" -- very low frequency packets...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

LaserForum 2018 thematisiert die 3D-Fertigung von Komponenten

17.08.2018 | Veranstaltungen

Aktuelles aus der Magnetischen Resonanzspektroskopie

16.08.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Oktober 2018

16.08.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Bionik im Leichtbau

17.08.2018 | Verfahrenstechnologie

Klimafolgenforschung in Hannover: Kleine Pflanzen gegen große Wellen

17.08.2018 | Biowissenschaften Chemie

HAWK-Ingenieurinnen und -Ingenieure entwickeln die leichteste 9to-LKW-Achse ihrer Art

17.08.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics