Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Formel errechnet Dicke von bombensicherem Beton

01.07.2014

Ein neuartiger Stahlbeton schützt Gebäude besser vor Bombenanschlägen. Forscher haben eine Formel ermittelt, die die notwendige Dicke des Betons schnell berechnet. Der Baustoff kommt im One World Trade Center auf dem Ground Zero zum Einsatz.

Bei Erdbeben oder Explosionen entstehen große Kräfte. Spannungen im Bereich von mehreren tausend Megapascal wirken im nahen Abstand zu einer Autobombe, aber auch in weiteren Entfernungen zum Detonationsort können noch mehrere hundert Kilopascal Druckbelastung auftreten.


Das One World Trade Centeram Ground Zero steht kurz vor der Einweihung. Geschützt wird das Gebäude unter anderem von einem Sicherheitsbeton, der von DUCON Europe GmbH & Co KG entwickelt und von Fraunhofer berechenbar gemacht wurde. Somit lässt er sich effizient einsetzen. (© Fraunhofer EMI)

Zum Vergleich: Der Luftdruck in einem Fahrradreifen liegt bei etwa drei bar. Das entspricht etwa 300 Kilopascal. »Bei Detonationen ist für den Menschen im größeren Abstand zum Detonationsort aber weniger die Druckwelle gefährlich. Darauf ist unser Körper eigentlich ganz gut eingestellt. Gefährlicher sind herumfliegende Trümmerteile«, erklärt Dr. Alexander Stolz aus der Abteilung »Sicherheitstechnologie und Baulicher Schutz« am Efringen-Kirchener Standort des Freiburger Fraunhofer-Instituts für Kurzzeitdynamik, Ernst Mach-Institut, EMI.

Genau das passiert mit herkömmlichem Stahlbeton, wenn dieser von der Druckwelle einer Explosion erfasst wird: Er ist so spröde, dass einzelne, zum Teil große Stücke herausgerissen werden und unkontrolliert durch die Luft fliegen.

Dr. Stephan Hauser, Geschäftsführer der DUCON Europe GmbH & CoKG, hat einen Beton entwickelt, der unter einer solchen Belastung nicht bricht, sondern sich lediglich verformt. Eine spezielle Mischung aus einem sehr festen Hochleistungsbeton und einem feinmaschigen Bewehrungsgitter aus Stahl macht dies möglich. Das EMI unterstützt Hauser seit mehreren Jahren bei der Optimierung seiner patentierten Innovation.

Die Forscher sind insbesondere für die dynamischen Qualifikationstests des Materials bei außergewöhnlichen Lasten zuständig. Dazu gehört unter anderem, dass sie den Werkstoff charakterisieren und die Kennlinien zu dessen Bemessung errechnen. Die Wissenschaftler haben eine mathematische Formel ermittelt, die es für jede individuelle Anforderung erlaubt, die Dicke des neuartigen Betons einfach und schnell zu ermitteln. »Bisher geschah dies aus Vergleichswerten heraus und durch Erfahrungswerte. Jetzt können wir einen allgemeingültigen Algorithmus nutzen«, so Stolz.

Die Formel ist während einer Versuchsreihe mit der neuen Stoßrohranlage am Standort Efringen-Kirchen entstanden. »Wir können hier Explosionen unterschiedlicher Sprengkraft simulieren – von 100 bis 2500 Kilogramm TNT in Abständen von 35 bis 50 Metern vor Gebäuden. Und das, ohne Sprengstoff einsetzen zu müssen«, sagt Stolz. Das Prinzip: Das Stoßrohr besteht aus einem Kompressions- und einem Expansionsteil, getrennt durch eine Stahlmembran. Im Kompressionsteil können die Wissenschaftler die Luft auf bis zu 30 bar komprimieren, den Druck also auf den 30-fachen Luftdruck erhöhen. Ist der Druck eingestellt, wird die Stahlmembran angestochen:

Die Luft entweicht schlagartig, läuft durch das Expansionsteil hindurch und trifft als ebene Stoßfront auf das B, so Stolz.

Formel eignet sich auch für Erdbeben- und Explosionsschutz

Die neue Berechnungsformel erlaubt das schnelle Design der Elemente aus dem duktilen Beton. Das hohe Tragpotential des Werkstoffs, der über die Jahre gewonnene Erfahrungsschatz über dessen Möglichkeiten und schließlich die Kenntnis über die Belastungsgrenzen des Materials unter Explosionsbelastung ermöglichten den Einsatz des Sicherheitsbetons beim neuen One World Trade Center in New York. Das Gebäude ruht auf einem 20-geschossigen, bombensicheren Fundament, das über 60 Meter tief reicht.

Innerhalb des Gebäudes sind an besonders sicherheitskritischen Stellen insgesamt über mehrere tausend Quadratmeter Sicherheitsbeton verbaut. Der Wolkenkratzer ist in den letzten Jahren an der Südspitze Manhattans in die Höhe gewachsen. An dem Ort, wo am 11. September 2001 die Zwillingstürme des World Trade Centers nach einem beispiellosen Terrorakt in sich zusammenfielen und über 3000 Menschen unter sich begruben.

Mit 541,30 Metern ist es das höchste Gebäude der USA und das dritthöchste der Welt. »Mit Hilfe unserer Formel kann nun die Dicke des Betons exakt für die Sicherheitsanforderungen eines solchen speziellen Gebäudes errechnet werden«, sagt Stolz.

Dr. Alexander Stolz | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/Juli/Formel_errechnet_Dicke.html

Weitere Berichte zu: Beton Dicke Druckwelle EMI Expansionsteil Explosionen Kurzzeitdynamik Luftdruck Stahlmembran Werkstoff

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Ein Haus wird zum Internetstar
17.07.2018 | Bau-Fritz GmbH & Co. KG, seit 1896

nachricht Vertikales Begrünungssystem Biolit Vertical Green<sup>®</sup> auf Landesgartenschau Würzburg
16.07.2018 | Fraunhofer-Institut für Umwelt-, Sicherheits- und Energietechnik UMSICHT

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Diamant – ein unverzichtbarer Werkstoff der Fusionstechnologie

Forscher am KIT entwickeln Fenstereinheiten mit Diamantscheiben für Fusionsreaktoren – Neue Scheibe mit Rekorddurchmesser von 180 Millimetern

Klimafreundliche und fast unbegrenzte Energie aus dem Fusionskraftwerk – für dieses Ziel kooperieren Wissenschaftlerinnen und Wissenschaftler weltweit. Bislang...

Im Focus: Wiener Forscher finden vollkommen neues Konzept zur Messung von Quantenverschränkung

Quantenphysiker/innen der ÖAW entwickelten eine neuartige Methode für den Nachweis von hochdimensional verschränkten Quantensystemen. Diese ermöglicht mehr Effizienz, Sicherheit und eine weitaus geringere Fehleranfälligkeit gegenüber bisher gängigen Mess-Methoden, wie die Forscher/innen nun im Fachmagazin „Nature Physics“ berichten.

Die Vision einer vollständig abhörsicheren Übertragung von Information rückt dank der Verschränkung von Quantenteilchen immer mehr in Reichweite. Wird eine...

Im Focus: Was passiert, wenn wir das Atomgitter eines Magneten plötzlich aufheizen?

„Wir haben jetzt ein klares Bild davon, wie das heiße Atomgitter und die kalten magnetischen Spins eines ferrimagnetischen Nichtleiters miteinander ins Gleichgewicht gelangen“, sagt Ilie Radu, Wissenschaftler am Max-Born-Institut in Berlin. Das internationale Forscherteam fand heraus, dass eine Energieübertragung sehr schnell stattfindet und zu einem neuartigen Zustand der Materie führt, in dem die Spins zwar heiß sind, aber noch nicht ihr gesamtes magnetisches Moment verringert haben. Dieser „Spinüberdruck“ wird durch wesentlich langsamere Prozesse abgebaut, die eine Abgabe von Drehimpuls an das Gitter ermöglichen. Die Forschungsergebnisse sind jetzt in "Science Advances" erschienen.

Magnete faszinieren die Menschheit bereits seit mehreren tausend Jahren und sind im Zeitalter der digitalen Datenspeicherung von großer praktischer Bedeutung....

Im Focus: Erste Beweise für Quelle extragalaktischer Teilchen

Zum ersten Mal ist es gelungen, die kosmische Herkunft höchstenergetischer Neutrinos zu bestimmen. Eine Forschungsgruppe um IceCube-Wissenschaftlerin Elisa Resconi, Sprecherin des Sonderforschungsbereichs SFB1258 an der Technischen Universität München (TUM), liefert ein wichtiges Indiz in der Beweiskette, dass die vom Neutrino-Teleskop IceCube am Südpol detektierten Teilchen mit hoher Wahrscheinlichkeit von einer Galaxie in vier Milliarden Lichtjahren Entfernung stammen.

Um andere Ursprünge mit Gewissheit auszuschließen, untersuchte das Team um die Neutrino-Physikerin Elisa Resconi von der TU München und den Astronom und...

Im Focus: First evidence on the source of extragalactic particles

For the first time ever, scientists have determined the cosmic origin of highest-energy neutrinos. A research group led by IceCube scientist Elisa Resconi, spokesperson of the Collaborative Research Center SFB1258 at the Technical University of Munich (TUM), provides an important piece of evidence that the particles detected by the IceCube neutrino telescope at the South Pole originate from a galaxy four billion light-years away from Earth.

To rule out other origins with certainty, the team led by neutrino physicist Elisa Resconi from the Technical University of Munich and multi-wavelength...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie geht es unserer Ostsee? Ein aktueller Zustandsbericht

17.07.2018 | Veranstaltungen

Interdisziplinäre Konferenz: Diabetesforscher und Bioingenieure diskutieren Forschungskonzepte

13.07.2018 | Veranstaltungen

Conference on Laser Polishing – LaP: Feintuning für Oberflächen

12.07.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Optische Kontrolle von Herzfrequenz oder Insulinsekretion durch lichtschaltbaren Wirkstoff

17.07.2018 | Biowissenschaften Chemie

Umweltressourcen nachhaltig nutzen

17.07.2018 | Ökologie Umwelt- Naturschutz

Textilien 4.0: Smarte Kleidung und Wearables als Innovation

17.07.2018 | Innovative Produkte

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics