Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

SOM konzipiert ’Wolkenkratzer für ein neues Zeitalter’

11.01.2006
Umweltfreundliches Gebäude in Endausscheidung bei internationalem Wettbewerb

Das in Chicago ansässige Unternehmen Skidmore, Owings & Merrill hat ein 69-stöckiges Firmensitzgebäude konzipiert, das mehr Energie produzieren kann als es verbraucht, und verheisst hiermit neue Massstäbe in der umweltfreundlichen Architektur.


SKIDMORE OWINGS & MERRILL BUILDING DESIGN

Der Pearl River Tower, der für die Stadt Guangzhou in China geplant ist, würde Wind- und Solarenergie ernten. Die Konzeption des Gebäudes ermöglicht eine Steuerung und Lenkung der herrschenden Winde, so dass sie eine Art ’unsichtbare Klammer’ bilden, die zur Festigung des Turmes beiträgt, wie SOM Consulting Design Partner Adrian D. Smith erklärte.

"Wir haben es hier mit einem Hochleistungsbauwerk mit Kultcharakter zu tun, das in Einklang mit der Umwelt gestaltet wird", so Adrian Smith, der Pearl River entworfen hat. "Ein Wolkenkratzer für ein neues Zeitalter."

... mehr zu:
»Energie »Wind »Wolkenkratzer

Der innovative Entwurf ist mit zwei weiteren Kandidaten in der Endausscheidung eines internationalen Gestaltungswettbewerbs für den Geschäftssitz eines bedeutenden chinesischen Unternehmens. Guangzhou, 182 km von Hong Kong entfernt, ist eine subtropische Hafenstadt mit 6,6 Millionen Einwohnern.

Die gemeisselte Fassade des Pearl River Tower lenkt darüberhinaus den Wind in zwei Hohlräume in den Stockwerken des Gebäudes, die mit mechanischen Anlagen ausgestattet sind. Die dort hineinfahrenden Winde treiben Turbinen an, die die Energie für Heizung, Belüftung und Klimaanlagen des Gebäudes erzeugen.

"Diese Öffnungen sind auch dazu da, den Winddruck abzubauen, der auf die Vorderseite des Gebäudes ausgeübt wird", erklärte Gordon Gill, der Architekt des Projekts bei SOM. "Der potenziell schädliche negative Winddruck auf der anderen Seite des Gebäudes wird ebenfalls abgeschwächt. Das Ergebnis ist ein stabileres, komfortableres Gebäude."

Der Energieverbrauch wird herabgesetzt, indem das natürliche Tageslicht maximal ausgenützt, Solarenergie in Räumen mit Klimaanlage reduziert, Regenwasser zu Recyclingszwecken gespeichert und die Sonne zum Aufheizen für die Warmwasserversorgung verwendet wird. Schachtentlüftung, Plattenkühlung und Wärmesenken sorgen für die Abkühlung des Gebäudes. Wechselstrom wird von den Sonnenkollektoren an der Fassade erzeugt.

Der Gewinner dieses Konstruktionswettbewerbs soll im Februar 2006 bekanntgegeben werden.

Skidmore, Owings & Merrill LLP, im Jahr 1936 gegründet, ist eines der weltweit führenden Unternehmen in den Bereichen Architektur, Städtedesign, Konstruktion und Innenarchitektur. SOM hat einige der bedeutenden Bauwerke auf der Welt entworfen, darunter den Sears Tower, das John Hancock Center in Chicago und den Jin Mao Tower in Shanghai. Die Niederlassungen von SOM befinden sich in Chicago, New York, San Francisco, Washington DC, London und Shanghai.

Lee Bey | presseportal
Weitere Informationen:
http://www.som.com

Weitere Berichte zu: Energie Wind Wolkenkratzer

Weitere Nachrichten aus der Kategorie Architektur Bauwesen:

nachricht Schleichender Zerfall
22.10.2019 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht »Switch2Save«: Intelligente Fenster und Glasfassaden durch neuartige Schaltungstechnik
15.10.2019 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Architektur Bauwesen >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetisches Tuning auf der Nanoskala

Magnetische Nanostrukturen maßgeschneidert herzustellen und nanomagnetische Materialeigenschaften gezielt zu beeinflussen, daran arbeiten Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) gemeinsam mit Kollegen des Leibniz-Instituts für Festkörper- und Werkstoffforschung (IFW) Dresden und der Universität Glasgow. Zum Einsatz kommt ein spezielles Mikroskop am Ionenstrahlzentrum des HZDR, dessen hauchdünner Strahl aus schnellen geladenen Atomen (Ionen) periodisch angeordnete und stabile Nanomagnete in einem Probenmaterial erzeugen kann. Es dient aber auch dazu, die magnetischen Eigenschaften von Kohlenstoff-Nanoröhrchen zu optimieren.

„Materialien im Nanometerbereich magnetisch zu tunen birgt ein großes Potenzial für die Herstellung modernster elektronischer Bauteile. Für unsere magnetischen...

Im Focus: Magnets for the second dimension

If you've ever tried to put several really strong, small cube magnets right next to each other on a magnetic board, you'll know that you just can't do it. What happens is that the magnets always arrange themselves in a column sticking out vertically from the magnetic board. Moreover, it's almost impossible to join several rows of these magnets together to form a flat surface. That's because magnets are dipolar. Equal poles repel each other, with the north pole of one magnet always attaching itself to the south pole of another and vice versa. This explains why they form a column with all the magnets aligned the same way.

Now, scientists at ETH Zurich have managed to create magnetic building blocks in the shape of cubes that - for the first time ever - can be joined together to...

Im Focus: A new quantum data classification protocol brings us nearer to a future 'quantum internet'

The algorithm represents a first step in the automated learning of quantum information networks

Quantum-based communication and computation technologies promise unprecedented applications, such as unconditionally secure communications, ultra-precise...

Im Focus: REANIMA - für ein neues Paradigma der Herzregeneration

Endogene Mechanismen der Geweberegeneration sind ein innovativer Forschungsansatz, um Herzmuskelschäden zu begegnen. Ihnen widmet sich das internationale REANIMA-Projekt, an dem zwölf europäische Forschungszentren beteiligt sind. Das am CNIC (Centro Nacional de Investigaciones Cardiovasculares) in Madrid koordinierte Projekt startet im Januar 2020 und wird von der Europäischen Kommission mit 8 Millionen Euro über fünf Jahre gefördert.

Herz-Kreislauf-Erkrankungen verursachen weltweit die meisten Todesfälle. Herzinsuffizienz ist geradezu eine Epidemie, die neben der persönlichen Belastung mit...

Im Focus: Göttinger Chemiker weisen kleinstmögliche Eiskristalle nach

Temperaturabhängig gefriert Wasser zu Eis und umgekehrt. Dieser Vorgang, in der Wissenschaft als Phasenübergang bezeichnet, ist im Alltag gut bekannt. Um aber ein stabiles Gitter für Eiskristalle zu erreichen, ist eine Mindestanzahl an Molekülen nötig, ansonsten ist das Konstrukt instabil. Bisher konnte dieser Wert nur grob geschätzt werden. Einem deutsch-amerikanischen Forschungsteam unter Leitung des Chemikers Prof. Dr. Thomas Zeuch vom Institut für Physikalische Chemie der Universität Göttingen ist es nun gelungen, die Größe kleinstmöglicher Eiskristalle genau zu bestimmen. Die Forschungsergebnisse sind in der Fachzeitschrift Proceedings of the National Academy of Science erschienen.

Knapp 100 Wassermoleküle sind nötig, um einen Eiskristall in seiner kleinstmöglichen Ausprägung zu formen. Nachweisen konnten die Wissenschaftler zudem, dass...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Mediation – Konflikte konstruktiv lösen

12.11.2019 | Veranstaltungen

Hochleistungsmaterialien mit neuen Eigenschaften im Fokus von Partnern aus Wissenschaft und Wirtschaft

11.11.2019 | Veranstaltungen

Weniger Lärm in Innenstädten durch neue Gebäudekonzepte

08.11.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Die Selbstorganisation weicher Materie im Detail verstehen

12.11.2019 | Physik Astronomie

Magnetisches Tuning auf der Nanoskala

12.11.2019 | Physik Astronomie

»KaSiLi«: Bessere Batterien für Elektroautos »Made in Germany«

12.11.2019 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics