Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Warum Getreide besser ist

27.04.2018

Mit Wassermangel kommt Getreide viel besser zurecht als andere Pflanzen. Warum das so ist, haben Würzburger Forscher nun herausgefunden. Ihr Wissen könnte zur Züchtung von Nutzpflanzen führen, die resistenter gegen Trockenheit sind.

Ob Gerste, Weizen, Mais oder Reis: Alle diese Pflanzen gehören zu den Gräsern. Für die Ernährung der Weltbevölkerung sind sie sehr bedeutsam. Die Landwirtschaft erzeugt aus Gräsern 80 Prozent aller pflanzlichen Nahrungsmittel. Dieser Erfolg liegt unter anderem darin begründet, dass Gräser schneller als andere Pflanzen auf Trockenheit reagieren und Wassermangel besser überstehen können.


Die Vorgänge an einer Blattpore (Stoma) bei Gräsern. Beim Öffnen und Schließen werden Ionen im Shuttle-Transport zwischen Schließ- und Nebenzellen hin und her verschoben.

Bild: Dietmar Geiger

Wie kommt die größere Toleranz der Gräser gegenüber Trockenheit zustande? Lässt sie sich in andere Nutzpflanzen einzüchten, um in der Zukunft die landwirtschaftlichen Erträge zu sichern oder zu verbessern? Bei einer wachsenden Weltbevölkerung und angesichts des Klimawandels, der mit immer mehr Trocken- und Hitzeperioden einhergeht, könnte das wichtig sein.

Mit diesen Fragen beschäftigen sich die Pflanzenforscher Professor Rainer Hedrich, Professor Dietmar Geiger und Dr. Peter Ache von der Julius-Maximilians-Universität Würzburg (JMU). Am Beispiel der Braugerste haben sie untersucht, warum Gräser stresstoleranter und damit „bessere“ Nutzpflanzen sind als Kartoffel & Co.

Zwei Aminosäuren machen den Unterschied

Fündig wurden die Forscher im Protein SLAC1 der Schließzellen. Der Unterschied liegt in nur zwei Aminosäuren begründet – das sind die Bausteine, aus denen Proteine bestehen. „Wir wollen nun herausfinden, ob sich dieser kleine Unterschied nutzen lässt, um auch Kartoffeln, Tomaten oder Raps stresstoleranter zu machen“, sagt Rainer Hedrich.

Veröffentlicht sind die neuen Erkenntnisse im renommierten Fachblatt „Current Biology“. Hedrich, Geiger und Ache beschreiben darin, wie sie dem kleinen Unterschied zwischen Gräsern und anderen Pflanzen auf die Spur kamen.

Ionentransport ist ein Schlüsselvorgang

Ihre Forschungen setzten an den mikroskopisch kleinen Blattporen an. Über diese Öffnungen strömt Kohlendioxid für die Photosynthese in den Pflanzenkörper. Sie sind aber auch die Austrittspforten für Wasser. Um zu verhindern, dass sie durch Verdunstung zu viel Wasser verlieren, haben Landpflanzen während der Evolution gelernt, ihre Blattporen mit der Hilfe von speziellen Schließzellen aktiv zu öffnen und zu schließen. Bei diesem Regulationsprozess spielen Membranproteine wie zum Beispiel SLAC1 eine entscheidende Rolle – wie Kanäle leiten sie Ionen in die Zellen hinein oder hinaus.

Hedrich ist überzeugt: „Ein grundlegendes Verständnis der molekularen Vorgänge beim Ionentransport über die Plasmamembran der Schließzellen ist der Schlüssel, um die Trockentoleranz und die Erträge landwirtschaftlich genutzter Pflanzen zu verbessern.“

Ionen-Shuttle macht Blattporen effizienter

Eine Besonderheit der Gräser zeigt sich an den Blattporen: Diese sind von zwei Zellpaaren umrandet, während man bei anderen Pflanzen nur ein Zellpaar findet. Die Gräser besitzen zwei hantelförmige Schließzellen, die die Pore bilden und regulieren. Dazukommen zwei Nebenzellen.

Die JMU-Forscher haben nachgewiesen, dass die Nebenzellen beim Schließen der Pore das Kalium und das Chlorid aus den Schließzellen aufnehmen und speichern. Beim Öffnen der Pore reichen sie die Ionen wieder an die Schließzellen weiter. „Unsere Getreide nutzen die Nebenzellen als dynamisches Reservoir für osmotisch aktive Ionen. Dieser Ionen-Shuttle zwischen Schließ- und Nebenzelle erlaubt es, die Öffnungsweite der Poren besonders schnell und effizient zu regulieren“, erklärt Dietmar Geiger.

Zwei Mess-Systeme für mehr Trockentoleranz

Es gibt noch einen zweiten Mechanismus, der Gräser besser auf Trockenheit reagieren lässt. Pflanzen produzieren bei Wassermangel das Stresshormon ABA (Abszissinsäure). Es aktiviert in den Schließzellen die Ionenkanäle der SLAC1-Familie, leitet damit das Schließen der Blattporen ein und verhindert so binnen weniger Minuten das Verwelken der Pflanze.

„Interessanterweise haben wir festgestellt, dass bei der Brauereigerste und anderen Gräsern zusätzlich zu ABA auch Nitrat vorhanden sein muss, damit sich die Poren schließen“, sagt Peter Ache. Über den Nitratgehalt könne die Gerste messen, wie es um ihre Photosynthese bestellt ist. Läuft sie gut, ist wenig Nitrat vorhanden.

Die Gerste setzt also auf zwei Mess-Systeme: Sie registriert die Wasserverfügbarkeit via ABA und die Photosynthese-Effizienz via Nitrat. „Durch die Kombination der beiden kann sich die Gerste unter Stressbedingungen zwischen den Extremen ‚Verhungern‘ und ‚Verdursten‘ besser durchlavieren als andere Pflanzen“, erklärt Rainer Hedrich.

Nitratsensor bei anderen Nutzpflanzen testen

Wo liegt der Unterschied bei der Regulation der Blattporen auf molekularer Ebene begründet? Um das zu klären, analysierten die Forscher SLAC1-Kanäle aus mehreren krautigen Pflanzen im Vergleich zu Gräsern. Dabei konnten sie den „Nitratsensor“ der Gräser identifizieren: Er besteht aus einem Motiv von zwei Aminosäuren, das in der Evolution erstmals bei Moosen aufgetreten ist, weiter optimiert wurde und den Schließzellen der Gräser einzigartige Eigenschaften verleiht.

Als nächstes will das JMU-Team klären, ob krautige Kulturpflanzen davon profitieren, wenn auch sie über den Nitratsensor verfügen. Dazu sollen zunächst Arabidopsis-Pflanzen, denen der Kanal SLAC1 fehlt, mit dem SLAC1-Kanal der Gerste ausgestattet werden. „Wenn ihre Stresstoleranz dann steigt, können wir weiter über die Züchtung von optimierten Kartoffeln, Tomaten oder Raps nachdenken“, so Hedrich.

Finanzierung im BayKlimaFit-Programm

Diese Arbeiten fanden im Rahmen des BayKlimaFit-Konsortiums statt. Sein Ziel ist es, Strategien zur Anpassung von Kulturpflanzen an den Klimawandel zu finden. Finanziell gefördert wird das Konsortium vom Bayerischen Staatsministerium für Umwelt und Verbraucherschutz.

“A tandem amino acid residue motif in guard cell SLAC1 anion channel of grasses allows for the control of stomatal aperture by nitrate”. Nadine Schäfer, Tobias Maierhofer, Johannes Herrmann, Morten Egevang Jørgensen, Christof Lind, Katharina von Meyer, Silke Lautner, Jörg Fromm, Marius Felder, Alistair M. Hetherington, Peter Ache, Dietmar Geiger, Rainer Hedrich. Current Biology, 26. April 2018, DOI: 10.1016/j.cub.2018.03.027

Kontakt

Prof. Dr. Rainer Hedrich, Julius-von-Sachs-Institut für Biowissenschaften der Universität Würzburg, T +49 931 31-86100, hedrich@botanik.uni-wuerzburg.de

Weitere Informationen:

http://www.bayklimafit.de/ Forschungskonsortium BayKlimaFit
http://www.bayklimafit.de/index.php?id=22&L=0 Prof. Hedrichs BayKlimaFit-Teilprojekt
https://www.biozentrum.uni-wuerzburg.de/en/bot1/research/prof-dr-rainer-hedrich/ Arbeitsgruppe Prof. Hedrich

Robert Emmerich | Julius-Maximilians-Universität Würzburg

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Internationales Forscherteam unter Leitung der Universität Göttingen entschlüsselt Abwehrmechanismus von Schimmelpilzen
20.08.2019 | Georg-August-Universität Göttingen

nachricht Perfekte Düngung mithilfe des Smartphones
19.08.2019 | Hochschule Osnabrück

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantencomputer sollen tragbar werden

Infineon Austria forscht gemeinsam mit der Universität Innsbruck, der ETH Zürich und Interactive Fully Electrical Vehicles SRL an konkreten Fragestellungen zum kommerziellen Einsatz von Quantencomputern. Mit neuen Innovationen im Design und in der Fertigung wollen die Partner aus Hochschulen und Industrie leistbare Bauelemente für Quantencomputer entwickeln.

Ionenfallen haben sich als sehr erfolgreiche Technologie für die Kontrolle und Manipulation von Quantenteilchen erwiesen. Sie bilden heute das Herzstück der...

Im Focus: Quantum computers to become portable

Together with the University of Innsbruck, the ETH Zurich and Interactive Fully Electrical Vehicles SRL, Infineon Austria is researching specific questions on the commercial use of quantum computers. With new innovations in design and manufacturing, the partners from universities and industry want to develop affordable components for quantum computers.

Ion traps have proven to be a very successful technology for the control and manipulation of quantum particles. Today, they form the heart of the first...

Im Focus: Towards an 'orrery' for quantum gauge theory

Experimental progress towards engineering quantized gauge fields coupled to ultracold matter promises a versatile platform to tackle problems ranging from condensed-matter to high-energy physics

The interaction between fields and matter is a recurring theme throughout physics. Classical cases such as the trajectories of one celestial body moving in the...

Im Focus: "Qutrit": Komplexe Quantenteleportation erstmals gelungen

Wissenschaftlern der Österreichischen Akademie der Wissenschaften und der Universität Wien ist es gemeinsam mit chinesischen Forschern erstmals gelungen, dreidimensionale Quantenzustände zu übertragen. Höherdimensionale Teleportation könnte eine wichtige Rolle in künftigen Quantencomputern spielen.

Was bislang nur eine theoretische Möglichkeit war, haben Forscher der Österreichischen Akademie der Wissenschaften (ÖAW) und der Universität Wien nun erstmals...

Im Focus: Laser für durchdringende Wellen: Forscherteam entwickelt neues Prinzip zur Erzeugung von Terahertz-Strahlung

Der „Landau-Niveau-Laser“ ist ein spannendes Konzept für eine ungewöhnliche Strahlungsquelle. Er hat das Zeug, höchst effizient sogenannte Terahertz-Wellen zu erzeugen, die sich zum Durchleuchten von Materialen und für die künftige Datenübertragung nutzen ließen. Bislang jedoch scheiterten nahezu alle Versuche, einen solchen Laser in die Tat umzusetzen. Auf dem Weg dorthin ist einem internationalen Forscherteam nun ein wichtiger Schritt gelungen: Im Fachmagazin Nature Photonics stellen sie ein Material vor, das Terahertz-Wellen durch das simple Anlegen eines elektrischen Stroms erzeugt. Physiker des Helmholtz-Zentrums Dresden-Rossendorf (HZDR) waren maßgeblich an den Arbeiten beteiligt.

Ebenso wie Licht zählen Terahertz-Wellen zur elektromagnetischen Strahlung. Ihre Frequenzen liegen zwischen denen von Mikrowellen und Infrarotstrahlung. Sowohl...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Wie smarte Produkte Unternehmen herausfordern

20.08.2019 | Veranstaltungen

Innovationen der Luftfracht: 4. Air Cargo Conference in Frankfurt am Main

20.08.2019 | Veranstaltungen

Gedanken rasen zum Erfolg: CYBATHLON BCI Series 2019

16.08.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Biomarker verraten Gesundheit im Alter

21.08.2019 | Biowissenschaften Chemie

Struktur und Ort von Stoffwechselprodukten gleichzeitig sichtbar machen

21.08.2019 | Biowissenschaften Chemie

Sternenstaub im antarktischen Schnee liefert Hinweise auf die Umgebung des Sonnensystems

21.08.2019 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics