Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Wälder im Wandel – was die Artenvielfalt beeinflusst

27.07.2015

Ökologe der Universität Jena legt mit internationalem Team detaillierte Biodiversitätsanalyse für gemäßigte Wälder in Europa vor

Der Klimawandel, Umweltverschmutzung oder unkontrollierter Holzeinschlag – es gibt zahlreiche Einflüsse, die die Artenvielfalt in den Wäldern rund um den Globus bedrohen. Dass die Biodiversität in der Folge immer weiter zurückgeht, darüber herrscht unter Wissenschaftlern und auch in der öffentlichen Wahrnehmung heute weitgehend Einigkeit.


Erlenbruchwald mit dichter Krautschicht.

Foto: Markus Bernhardt-Römermann/FSU

Doch diese Sicht sei zu einfach, sagt Dr. Markus Bernhardt-Römermann von der Friedrich-Schiller-Universität Jena. „Zumindest lässt sich ein solcher Trend nicht pauschal auf alle Wälder übertragen.“

Zu diesem Ergebnis kommt der Jenaer Ökologe in einer aktuellen Studie, die heute (27. Juli) in der Fachzeitschrift „Global Change Biology“ veröffentlicht wird (DOI: 10.1111/gcb.12993). Gemeinsam mit einem internationalen Forscherteam aus ganz Europa hat Bernhardt-Römermann die Artenvielfalt in Wäldern der gemäßigten Zone Europas umfassend analysiert und dabei festgestellt, dass sich im Mittel die Pflanzenvielfalt in der Krautschicht in den zurückliegenden Jahrzehnten nicht verändert hat.

Dieses zunächst überraschende Ergebnis bedeute allerdings nicht, dass in Sachen Biodiversität alles zum Besten stehe, macht der Ökologe deutlich. Denn: „Auf lokaler Ebene können die Veränderungen durchaus gravierend sein.“ So gebe es Regionen, in denen die Artenvielfalt in den vergangenen Jahren deutlich gesunken ist, während sie in anderen Regionen aber zugenommen habe.

Insgesamt 39 Standorte in 13 europäischen Ländern – von der Schweiz und Ungarn im Süden bis nach Schweden im Norden und von Irland im Westen bis Polen im Osten – haben Bernhardt-Römermann und seine Kollegen untersucht. Die Daten dazu stammen aus dem Forschungsnetzwerk „forestREplot“, an deren Aufbau der Jenaer Ökologe gemeinsam mit Wissenschaftlern aus Belgien, der Tschechischen Republik und den USA federführend beteiligt ist.

In einer Datenbank werden Datensätze gesammelt, die Auskunft über die zeitliche Entwicklung der Pflanzenarten in Wäldern der gemäßigten Klimazone weltweit geben. „Wenn in ein und demselben Gebiet zu unterschiedlichen Zeitpunkten ein solcher Inventurdatensatz erhoben wird, lassen sich Veränderungen über die Zeit ermitteln“, sagt Bernhardt-Römermann.

Für die nun vorgelegte Studie haben die Ökologen die Daten für die 39 ausgewählten Laubwälder Europas zu zwei unterschiedlichen Zeitpunkten (im Abstand von 17 bis 75 Jahren) untersucht und diese in Beziehung zu Klimadaten, Angaben zur Bewirtschaftung der Wälder, Stickstoffeintrag und Wilddichte gesetzt.

Auf diese Weise konnten die Forscher zeigen, welche Faktoren darüber entscheiden, wie sich die Vielfalt an Pflanzen in einem bestimmten Gebiet verändert. „Wir haben festgestellt, dass Klimaveränderungen insgesamt keine wesentliche Änderung der Diversität hervorrufen“, nennt Bernhardt-Römermann das verblüffende Ergebnis. Vielmehr beeinflussen, neben lokalen Faktoren wie den Lichtverhältnissen – die wiederum in Folge menschlicher Nutzung variieren können –, vor allem die Stickstoffverfügbarkeit und die Dichte des lokalen Wildbestandes die Vielfalt in der vorhandenen Krautschicht entscheidend.

So gehen beispielsweise in beinahe allen untersuchten Gebieten die Bestände der Arten deutlich zurück, die nährstoffarme und trockene Wälder bevorzugen, wie Berg-Segge (Carex montana) oder Straußblütige Wucherblume (Tanacetum corymbosum). Auf der anderen Seite gedeihen Winkel-Segge (Carex remota), Karthäuserfarn (Dryopteris carthusiana) und Gewöhnliches Rispengras (Poa trivialis) deutlich besser, die besonders auf feuchteren und nährstoffreichen Böden – mit einem hohen Stickstoffgehalt – gedeihen.

Als Konsequenz aus ihren Ergebnissen empfehlen die Forscher, künftige Prognosen zur Entwicklung der Artenvielfalt nicht nur auf globale Kriterien, wie Klimaänderungen oder Landnutzungsmodelle, zu stützen, da diese wichtige Details nicht ausreichend berücksichtigen. Vielmehr müssten auch lokale Einflüsse, wie Wildbestand und Stickstoffversorgung, einbezogen werden, um die Qualität der Vorhersagen zu verbessern.

Original-Publikation:
Bernhardt-Römermann M, Baeten L, Craven D, De Frenne P, Hédl R, Lenoir J, Bert D, Brunet J, Chudomelová M, Decocq G, Dierschke H, Dirnböck T, Dörfler I, Heinken T, Hermy M, Hommel P, Jaroszewicz B, Keczyński A, Kelly DL, Kirby KJ, Kopecký M, Macek M, Máliš F, Mirtl M, Mitchell FJG, Naaf T, Newman M, Peterken G, Petřík P, Schmidt W, Standovár T, Tóth Z, Van Calster H, Verstraeten G, Vladovič J, Vild O, Wulf M, Verheyen K: Drivers of temporal changes in temperate forest plant diversity vary across spatial scales. Global Change Biology (2015). DOI: 10.1111/gcb.12993

Kontakt:
Dr. Markus Bernhardt-Römermann
Institut für Ökologie der Friedrich-Schiller-Universität Jena
Dornburger Straße 159, 07743 Jena
Tel.: 03641 / 949435
E-Mail: markus.bernhardt[at]uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Dr. Ute Schönfelder | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Antibiotikaresistenzen steigen massiv an
20.09.2019 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Pflanzenkrankheiten: Uni Hohenheim & Bosch setzen auf Sensoren & künstliche Intelligenz
13.09.2019 | Universität Hohenheim

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 'Nanochains' could increase battery capacity, cut charging time

How long the battery of your phone or computer lasts depends on how many lithium ions can be stored in the battery's negative electrode material. If the battery runs out of these ions, it can't generate an electrical current to run a device and ultimately fails.

Materials with a higher lithium ion storage capacity are either too heavy or the wrong shape to replace graphite, the electrode material currently used in...

Im Focus: Nervenzellen feuern Hirntumorzellen zum Wachstum an

Heidelberger Wissenschaftler und Ärzte beschreiben aktuell im Fachjournal „Nature“, wie Nervenzellen des Gehirns mit aggressiven Glioblastomen in Verbindung treten und so das Tumorwachstum fördern / Mechanismus der Tumor-Aktivierung liefert Ansatzpunkte für klinische Studien

Nervenzellen geben ihre Signale über Synapsen – feine Zellausläufer mit Kontaktknöpfchen, die der nächsten Nervenzelle aufliegen – untereinander weiter....

Im Focus: Stevens team closes in on 'holy grail' of room temperature quantum computing chips

Photons interact on chip-based system with unprecedented efficiency

To process information, photons must interact. However, these tiny packets of light want nothing to do with each other, each passing by without altering the...

Im Focus: Happy hour für die zeitaufgelöste Kristallographie

Ein Forschungsteam vom Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD), der Universität Hamburg und dem European Molecular Biology Laboratory (EMBL) hat eine neue Methode entwickelt, um Biomoleküle bei der Arbeit zu beobachten. Sie macht es bedeutend einfacher, enzymatische Reaktionen auszulösen, da hierzu ein Cocktail aus kleinen Flüssigkeitsmengen und Proteinkristallen angewandt wird. Ab dem Zeitpunkt des Mischens werden die Proteinstrukturen in definierten Abständen bestimmt. Mit der dadurch entstehenden Zeitraffersequenz können nun die Bewegungen der biologischen Moleküle abgebildet werden.

Die Funktionen von Biomolekülen werden nicht nur durch ihre molekularen Strukturen, sondern auch durch deren Veränderungen bestimmt. Mittels der...

Im Focus: Happy hour for time-resolved crystallography

Researchers from the Department of Atomically Resolved Dynamics of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg, the University of Hamburg and the European Molecular Biology Laboratory (EMBL) outstation in the city have developed a new method to watch biomolecules at work. This method dramatically simplifies starting enzymatic reactions by mixing a cocktail of small amounts of liquids with protein crystals. Determination of the protein structures at different times after mixing can be assembled into a time-lapse sequence that shows the molecular foundations of biology.

The functions of biomolecules are determined by their motions and structural changes. Yet it is a formidable challenge to understand these dynamic motions.

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

92. Neurologie-Kongress: Mehr als 6500 Neurologen in Stuttgart erwartet

20.09.2019 | Veranstaltungen

Frische Ideen zur Mobilität von morgen

20.09.2019 | Veranstaltungen

Thermodynamik – Energien der Zukunft

19.09.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Ferroelektrizität verbessert Perowskit-Solarzellen

20.09.2019 | Energie und Elektrotechnik

HD-Mikroskopie in Millisekunden

20.09.2019 | Biowissenschaften Chemie

Kinobilder aus lebenden Zellen: Forscherteam aus Jena und Bielefeld 
verbessert superauflösende Mikroskopie

20.09.2019 | Medizintechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics