Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Trickreiche Methode im Nachbarschaftsstreit: Tabakpflanzen schicken hungrige Raupen zur Konkurrenz

25.01.2019

Ihren Fraßfeinden davonrennen können Pflanzen nicht. Doch viele Arten produzieren chemische Substanzen, die hungrigen Krabbeltieren nicht gut bekommen. Auf diese Weise setzt sich auch der Wilde Tabak gegen die Raupen des Tabakschwärmers zur Wehr. Dass es sich dabei für eine Pflanze lohnen kann, die Plagegeister einige Tage zu ertragen bevor sie die Abwehr startet, zeigt eine neue Studie unter der Leitung von Wissenschaftlern des Forschungszentrums iDiv, der Universität Jena und des UFZ. Denn auf diese Weise wechseln die Raupen genau dann zu einer benachbarten Pflanze, wenn sie so richtig Appetit bekommen – was Pflanze Nummer eins einen Vorteil im innerartlichen Konkurrenzkampf verschafft.

Eigentlich würde man vermuten, dass Pflanzen Nachteile entstehen, wenn sie sich erst gegen Fraßfeinde wehren, wenn diese bereits erste Schäden hinterlassen haben.


Nikotin können die Raupen des Tabakschwärmers (Manduca sexta) tolerieren, doch wenn ihre Wirtspflanze andere chemische Substanzen produziert, suchen sie sich einen neuen Fressplatz.

Pia Backmann


Die Erstautorin der Studie, Dr. Pia Backmann, in der Wüstenlandschaft „Großes Becken“ (Great Basin Desert) in Utah, USA, dem Lebensraum des Wilden Tabaks.

Danny Kessler

Je schneller eine Pflanze reagiert, umso besser, sollte man meinen. Doch warum stellen manche Pflanzenarten ihre Abwehrstoffe erst nach mehreren Tagen her, nachdem sie etwa von Schmetterlingsraupen befallen werden?

Eine Erklärung liefert jetzt ein Forscherteam unter Leitung des Deutschen Zentrums für integrative Biodiversitätsforschung (iDiv), der Friedrich-Schiller-Universität Jena (FSU) und des Helmholtz-Zentrums für Umweltforschung (UFZ) im Fachmagazin The American Naturalist. Die Wissenschaftler haben sich mit dem Wilden Tabak (Nicotiana attenuata) beschäftigt, an dem die Raupen des Tabakschwärmers (Manduca sexta) mit Vorliebe fressen.

Um sich dagegen zu wehren, produzieren die Pflanzen chemische Abwehrstoffe, die für die Raupen giftig sind. Warum die Pflanzen damit aber einige Tage lang warten, nachdem eine Raupe aus ihrem Ei geschlüpft ist, konnten die Forscher nun mithilfe eines Computermodells auf Basis von Beobachtungsdaten klären.

Der Schlüssel liegt in der besonderen Ökologie des Wilden Tabaks. Die Art wächst in Wüstengebieten in den Vereinigten Staaten, wo Samen jahrelang im Boden auf ein Feuer warten, um dann alle gemeinsam zu keimen. Entsprechend hoch ist so die Konkurrenz zwischen den vielen gleich alten Tabakpflanzen um Wasser und Nährstoffe.

Muss sich eine Pflanze dann auch noch mit Fraßfeinden herumschlagen, bringt ihr dies große Nachteile. „Der Wilde Tabak hat allerdings eine trickreiche Möglichkeit gefunden, den ‚Schwarzen Peter‘ weiterzureichen: Die Pflanze schickt die Raupen kurzerhand zu ihren Nachbarn“, sagt Dr. Pia Backmann vom Forschungszentrum iDiv und dem Helmholtz-Zentrum für Umweltforschung (UFZ).

Und das klappt am besten, wenn die Raupen des Tabakschwärmers bereits einige Tage alt sind, wie das neue Modell von Pia Backmann zeigt. Davor sind sie nämlich noch zu klein und unbeweglich, um den Weg bis zu einer anderen Pflanze zu schaffen. Zudem fressen sie auch noch recht wenig, die entstehenden Schäden sind also gering.

Ab einem Alter von etwa zehn Tagen geht das Fressen aber richtig los: Ab jetzt konsumieren die Raupen weit über 90 Prozent der Blattmasse, die sie bis zu ihrer Verpuppung zum Schmetterling in einem Alter von etwa 21 Tagen zu sich nehmen werden.

Und sie sind jetzt groß genug, um auf eine andere Pflanze zu wechseln, wenn es ungemütlich wird, sprich: wenn ihre Wirtspflanze die Verteidigung hochgefahren hat. Aus diesem Grund startet die Pflanze optimalerweise erst etwa vier Tage nach dem Raupenbefall mit der Produktion von Giftstoffen. Bis die Abwehr vollständig aktiv ist, dauert es noch ein paar weitere Tage.

„Für die Tabakpflanzen gilt bei der Produktion von Abwehrstoffen also nicht ‚je schneller, desto besser‘“, sagt Prof. Nicole van Dam vom Forschungszentrum iDiv und der Universität Jena. „Stattdessen geht es darum, die Verteidigung zum richtigen Zeitpunkt zu aktivieren: Denn dann krabbelt die Raupe zur Nachbarin und schwächt diese – und die trickreiche Pflanze wird am Ende ihre Konkurrentin überragen.“

Wehrt sich die Pflanze hingegen zu früh, gelingt es ihr zwar vielleicht, die Raupe nach einigen Tagen zu töten. Doch da die Produktion der Abwehrstoffe Energie kostet, wird die Pflanze letztlich im Wachstum hinter ihren Artgenossen zurückbleiben. Setzt die Abwehr zu spät ein, bleibt die Raupe womöglich bis zur Verpuppung und richtet große Fraßschäden an, wodurch die Pflanze sogar sterben kann.

Dass sich die Raupen unter der Wirkung der Abwehrstoffe langsamer entwickeln und öfter sterben, hatte Prof. Nicole van Dam gemeinsam mit Prof. Ian Baldwin, Forscher am Max-Planck-Institut für chemische Ökologie, MPI-CE, und ein Mitglied von iDiv, bereits in vorangegangenen Laborversuchen herausgefunden.

Dabei hatte sich auch gezeigt, dass es sich für Raupen auf Pflanzen mit aktivierter Verteidigung bezahlt macht, auf eine andere Pflanze zu wechseln, die noch keine Abwehrstoffe produziert. Dass es sich aber aus Sicht der Pflanze um eine Strategie zur Bewältigung von innerartlicher Konkurrenz handelt, sich ein paar Tage lang anfressen zu lassen und erst dann zu verteidigen, konnte erst mithilfe des neuen Computermodells geklärt werden.

Erstautorin Pia Backmann hat die Studie am Forschungszentrum iDiv sowie dem UFZ durchgeführt, die Beobachtungsdaten hat sie während eines Aufenthaltes in der Feldstation des MPI-CE in den USA gesammelt. Mittlerweile arbeitet Pia Backmann als Postdoktorandin an der Technischen Universität Dresden.
Tabea Turrini


Wilder Tabak und Tabakschwärmer:

Der Wilde Tabak (Nicotiana attenuata) ist verwandt mit jenen Pflanzenarten, die zur Produktion von Rauchtabak genutzt werden. Früher wurde der Wilde Tabak von manchen Stämmen Amerikanischer Ureinwohner geraucht. Die Pflanze produziert permanent Nikotin, um Säugetiere oder andere nicht-spezialisierte Fraßfeinde abzuwehren.

Die auf den Wilden Tabak spezialisierten Raupen des Tabakschwärmers (Maduca sexta) können das Nikotin jedoch tolerieren (und sogar in ihren Körper anreichern, um sich ihrerseits vor Fressfeinden wie Vögeln oder Echsen zu schützen). Um sich gegen die Raupen zu verteidigen, produziert der Wilde Tabak Giftstoffe und so genannte Proteinase-Hemmer, welche die Raupen schwächen, ihr Wachstum hemmen und sie sogar töten können.

Zusätzlich verströmt die Pflanze bei Raupenbefall Duftstoffe, um Fraßfeinde der Raupe anzulocken. Die Verteidigungsmechanismen gegen die Raupen sind jedoch nicht permanent aktiv. Sie werden erst hochgefahren, nachdem die Pflanze eine Raupe registriert hat, wobei ihr deren Speichel als Hinweis dient.

Meist werden Tabakpflanzen von einer, manchmal auch von mehreren Raupen gleichzeitig befallen. Viele der Erkenntnisse zu den Wechselwirkungen zwischen dem Wilden Tabak und dem Tabakschwärmer gehen auf Forschungsarbeiten von Ian Baldwin, der seit mehr als 20 Jahren an diesem System forscht, und seiner Arbeitsgruppe zurück.

Frühere Medienmitteilungen zu einem ähnlichen Thema:
20. April 2017: Bergamoten – Verlockung und Verhängnis für Tabakschwärmer
Medienmitteilung des Max-Planck-Instituts für chemische Ökologie, Jena
https://www.ice.mpg.de/ext/index.php?id=1370&L=1

Ansprechpartner:

Prof. Nicole van Dam
Leiterin der Forschungsgruppe Molekulare Interaktionsökologie
Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig
Friedrich-Schiller-Universität Jena
Tel.: +49 341 9733165
E-Mail: nicole.vandam@idiv.de
Web: https://www.idiv.de/de/das_zentrum/mitarbeiterinnen/mitarbeiterdetails/eshow/van...

Dr. Pia Backmann
Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig
Helmholtz-Zentrum für Umweltforschung (UFZ)
Max-Planck-Institut für chemische Ökologie
Technische Universität Dresden
Tel.: Bitte bei iDiv Medien und Kommunikation erfragen.
E-Mail: pia.backmann@ufz.de
Web: https://piabackmann.wordpress.com (persönliche Webseite)

Dr. Tabea Turrini
Medien und Kommunikation
Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig
Tel.: +49 341 9733106
E-Mail: tabea.turrini@idiv.de
Web: https://www.idiv.de/de/gruppen_und_personen/mitarbeiterinnen/mitarbeiterdetails/...

Wissenschaftliche Ansprechpartner:

Prof. Nicole van Dam
Tel.: +49 341 9733165
E-Mail: nicole.vandam@idiv.de
Web: https://www.idiv.de/de/das_zentrum/mitarbeiterinnen/mitarbeiterdetails/eshow/van...

Dr. Pia Backmann
Tel.: Bitte bei iDiv Medien und Kommunikation erfragen.
E-Mail: pia.backmann@ufz.de
Web: https://piabackmann.wordpress.com (persönliche Webseite)

Originalpublikation:

Pia Backmann, Volker Grimm, Gottfried Jetschke, Yue Lin, Matthijs Vos, Ian T. Baldwin, and Nicole M. van Dam (2019): Delayed Chemical Defense: Timely Expulsion of Herbivores Can Reduce Competition with Neighboring Plants. The American Naturalist 193:1, 125-139. https://doi.org/10.1086/700577

Weitere Informationen:

https://www.idiv.de/de/news/news_single_view/news_article/ingenious_te-3.html

Tilo Arnhold | idw - Informationsdienst Wissenschaft
Weitere Informationen:
http://www.idiv.de/

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Wie der Mix aus Acker, Bäumen und Tieren auf dem Feld den Ertrag von Landwirten steigert
20.03.2019 | Brandenburgische Technische Universität Cottbus-Senftenberg

nachricht Lupine bringt Vielfalt in einseitigen Energiepflanzenanbau
19.03.2019 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Magnetische Mikroboote

Nano- und Mikrotechnologie sind nicht nur für medizinische Anwendungen wie in der Wirkstofffreisetzung vielversprechende Kandidaten, sondern auch für die Entwicklung kleiner Roboter oder flexibler integrierter Sensoren. Wissenschaftler des Max-Planck-Instituts für Polymerforschung (MPI-P) haben mit einer neu entwickelten Methode magnetische Mikropartikel hergestellt, die den Weg für den Bau von Mikromotoren oder die Zielführung von Medikamenten im menschlichen Körper, wie z.B. zu einem Tumor, ebnen könnten. Die Herstellung solcher Strukturen sowie deren Bewegung kann einfach durch Magnetfelder gesteuert werden und findet daher Anwendung in einer Vielzahl von Bereichen.

Die magnetischen Eigenschaften eines Materials bestimmen, wie dieses Material auf das Vorhandensein eines Magnetfeldes reagiert. Eisenoxid ist der...

Im Focus: Magnetic micro-boats

Nano- and microtechnology are promising candidates not only for medical applications such as drug delivery but also for the creation of little robots or flexible integrated sensors. Scientists from the Max Planck Institute for Polymer Research (MPI-P) have created magnetic microparticles, with a newly developed method, that could pave the way for building micro-motors or guiding drugs in the human body to a target, like a tumor. The preparation of such structures as well as their remote-control can be regulated using magnetic fields and therefore can find application in an array of domains.

The magnetic properties of a material control how this material responds to the presence of a magnetic field. Iron oxide is the main component of rust but also...

Im Focus: Goldkugel im goldenen Käfig

„Goldenes Fulleren“: Liganden-geschützter Nanocluster aus 32 Goldatomen

Forschern ist es gelungen, eine winzige Struktur aus 32 Goldatomen zu synthetisieren. Dieser Nanocluster hat einen Kern aus 12 Goldatomen, der von einer Schale...

Im Focus: Wichtiger Mechanismus der Antigenpräsentation in Wächterzellen des Immunsystems enträtselt

TWINCORE-Forscher entschlüsseln, wie der Transport von Antigenfragmenten auf die Oberfläche von Immunzellen des Menschen reguliert wird

Dendritische Zellen sind die Wächter unserer Immunabwehr. Sie lauern fremden Eindringlingen auf, schlucken sie, zerlegen sie in Bruchstücke und präsentieren...

Im Focus: Selbstheilender Lack aus Maisstärke lässt kleine Kratzer durch Wärme verschwinden

Ein neuer Lack aus Maisstärke ist wegen der besonderen Anordnung seiner Moleküle in der Lage, durch Wärme kleine Kratzer von selbst zu reparieren: Die Vernetzung über ringförmige Moleküle macht das Material beweglich, sodass es die Kratzer ausgleicht und diese wieder verschwinden.

Oberflächliche Mikrokratzer in der Autokarosserie oder auf anderen Hochglanzoberflächen sind harmlos, aber ärgerlich. Gerade im Luxussegment zeichnen sich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größte nationale Tagung 2019 für Nuklearmedizin in Bremen

21.03.2019 | Veranstaltungen

6. Magdeburger Brand- und Explosionsschutztage vom 25. bis 26.3. 2019

21.03.2019 | Veranstaltungen

Teilchenphysik trifft Didaktik und künstliche Intelligenz in Aachen

20.03.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Magnetische Mikroboote

21.03.2019 | Physik Astronomie

Protein BRCA1 als Stress-Coach

21.03.2019 | Biowissenschaften Chemie

Möglicher Ur-Stoffwechsel in Bakterien entdeckt

21.03.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics