Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Des einen Leid, des anderen Freud auf dem Baumwollfeld

13.03.2013
Indirekte Nebenwirkungen des Anbaus gentechnisch veränderter Pflanzen
Gentechnisch veränderte Bt-Baumwollpflanzen enthalten ein Gift, das sie vor ihren wichtigsten Frassfeinden schützt. Von ihrem eigenen Abwehrsystem machen diese Pflanzen deshalb weniger Gebrauch. Dadurch profitieren andere Schädlinge wie etwa Blattläuse. Zu diesen Einsichten kommt eine vom Schweizerischen Nationalfonds (SNF) unterstützte Studie.

Noch vor zehn Jahren wuchs gentechnisch veränderte Baumwolle auf 12 Prozent der Felder – heute wächst sie auf über 80 Prozent aller Baumwollfelder der Welt. Die Bt-Baumwolle enthält ein Gen des Bodenbakteriums Bacillus thuringiensis (Bt).
Damit produziert sie ein Gift, das für die wichtigsten Baumwollschädlinge – gefrässige Raupen von Schadschmetterlingen – tödlich ist. Dafür breiten sich etwa in chinesischen Baumwollfeldern bestimmte Wanzenarten und andere Schädlinge aus. Das liegt vielleicht nicht nur am starken Rückgang des Gebrauchs von chemischen Pflanzenschutzmitteln.

Den Appetit verderben
Denn nun weisen Wissenschaftler um Jörg Romeis von der Forschungsanstalt Agroscope Reckenholz-Tänikon einen biologischen Mechanismus nach (*), der eine zusätzliche Erklärung für das verstärkte Aufkommen neuer Schädlinge in Bt-Baumwollfeldern liefern könnte. Baumwollpflanzen verfügen über ein ausgefeiltes Verteidigungssystem. Wenn sie von Schmetterlingsraupen angefressen werden, beginnen sie Abwehrsubstanzen, so genannte Terpenoide, zu bilden. Dadurch verderben sie nicht nur den Raupen den Appetit, sondern auch vielen anderen Frassfeinden.

Mit ihren Versuchen haben Romeis und seine Kollegen gezeigt, dass das Gift der Bt-Baumwolle die Schmetterlingsraupen tötet, bevor sie den Pflanzen so viel Schaden zufügen, dass diese ihr Verteidigungssystem hochfahren. Auf diesen Pflanzen konnten sich dadurch Blattläuse – denen das Bt-Toxin nichts ausmacht – stärker vermehren als auf konventionellen Baumwollpflanzen, die sich mit ihren Terpenoiden gegen die Schmetterlingsraupen gewehrt hatten.

Effekt auch bei Wanzen?
Baumwollblattläuse richten gewöhnlich keine grossen landwirtschaftlichen Schäden an, weil sie im Freien ihren natürlichen Feinden zum Frass fallen. Für den Ackerbau seien seine Resultate deshalb nicht sehr relevant, sagt Romeis. Erstmals jedoch hat er mit seinem Team einen indirekten Effekt der Bt-Baumwolle aufgedeckt: Die Bekämpfung der Schmetterlingsraupen beeinflusst wegen dem inaktiv bleibenden Abwehrsystem der Pflanzen auch andere pflanzenfressende Insekten. Ob dieser Effekt nicht nur bei Blattläusen zum Tragen kommt, sondern etwa auch bei den Wanzen, die den Baumwollbauern in China und anderen Anbauregionen Sorgen bereiten, möchte Romeis als Nächstes untersuchen.

(*) Steffen Hagenbucher, Felix Wäckers, Felix Wettstein, Dawn Olson, John Ruberson and Jörg Romeis (2013). Pest tradeoffs in technology: Reduced damage by caterpillars in Bt cotton benefits aphids. Proceedings of the Royal Society B online. doi: 10.1098/rspb.2013.0042
(PDF beim SNF erhältlich; E-Mail: com@snf.ch)

Kontakt
Dr. Jörg Romeis
Forschungsanstalt Agroscope Reckenholz-Tänikon ART
Reckenholzstrasse 191
CH-8046 Zürich
Tel.: +41 44 377 72 99
E-Mail: joerg.romeis@art.admin.ch

Abteilung Kommunikation | idw
Weitere Informationen:
http://www.snf.ch

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Neuer Stall ermöglicht innovative Forschung für tiergerechte Haltungssysteme
19.11.2018 | Universität Bern

nachricht Mit gezücktem Laserschwert Schadinsekten in Vorratslagern bekämpfen
13.11.2018 | Julius Kühn-Institut, Bundesforschungsinstitut für Kulturpflanzen

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nonstop-Transport von Frachten in Nanomaschinen

Max-Planck-Forscher entdecken die Nanostruktur von molekularen Zügen und den Grund für reibungslosen Transport in den „Antennen der Zelle“

Eine Zelle bewegt sich ständig umher, tastet ihre Umgebung ab und sendet Signale an andere Zellen. Das ist wichtig, damit eine Zelle richtig funktionieren kann.

Im Focus: Nonstop Tranport of Cargo in Nanomachines

Max Planck researchers revel the nano-structure of molecular trains and the reason for smooth transport in cellular antennas.

Moving around, sensing the extracellular environment, and signaling to other cells are important for a cell to function properly. Responsible for those tasks...

Im Focus: InSight: Touchdown auf dem Mars

Am 26. November landet die NASA-Sonde InSight auf dem Mars. Erstmals wird sie die Stärke und Häufigkeit von Marsbeben messen.

Monatelanger Flug durchs All, flammender Abstieg durch die Reibungshitze der Atmosphäre und sanftes Aufsetzen auf der Oberfläche – siebenmal ist das Kunststück...

Im Focus: Weltweit erstmals Entstehung von chemischen Bindungen in Echtzeit beobachtet und simuliert

Einem Team von Physikern unter der Leitung von Prof. Dr. Wolf Gero Schmidt, Universität Paderborn, und Prof. Dr. Martin Wolf, Fritz-Haber-Institut Berlin, ist ein entscheidender Durchbruch gelungen: Sie haben weltweit zum ersten Mal und „in Echtzeit“ die Änderung der Elektronenstruktur während einer chemischen Reaktion beobachtet. Mithilfe umfangreicher Computersimulationen haben die Wissenschaftler die Ursachen und Mechanismen der Elektronenumverteilung aufgeklärt und visualisiert. Ihre Ergebnisse wurden nun in der renommierten, interdisziplinären Fachzeitschrift „Science“ veröffentlicht.

„Chemische Reaktionen sind durch die Bildung bzw. den Bruch chemischer Bindungen zwischen Atomen und den damit verbundenen Änderungen atomarer Abstände...

Im Focus: Rasende Elektronen unter Kontrolle

Die Elektronik zukünftig über Lichtwellen kontrollieren statt Spannungssignalen: Das ist das Ziel von Physikern weltweit. Der Vorteil: Elektromagnetische Wellen des Licht schwingen mit Petahertz-Frequenz. Damit könnten zukünftige Computer eine Million Mal schneller sein als die heutige Generation. Wissenschaftler der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) sind diesem Ziel nun einen Schritt nähergekommen: Ihnen ist es gelungen, Elektronen in Graphen mit ultrakurzen Laserpulsen präzise zu steuern.

Eine Stromregelung in der Elektronik, die millionenfach schneller ist als heutzutage: Davon träumen viele. Schließlich ist die Stromregelung eine der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Personalisierte Implantologie – 32. Kongress der DGI

19.11.2018 | Veranstaltungen

Internationale Konferenz diskutiert digitale Innovationen für die öffentliche Verwaltung

19.11.2018 | Veranstaltungen

Naturkonstanten als Hauptdarsteller

19.11.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Für eine neue Generation organischer Leuchtdioden: Uni Bayreuth koordiniert EU-Forschungsnetzwerk

20.11.2018 | Förderungen Preise

Nonstop-Transport von Frachten in Nanomaschinen

20.11.2018 | Biowissenschaften Chemie

Wie sich ein Kristall in Wasser löst

20.11.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics