Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Getreide für Extremregionen

30.04.2008
Salztoleranter Weizen wächst sogar in der Wüste
Ohne Bewässerung ist Ackerbau in vielen Gebieten der Erde nicht möglich. Bewässerung aber erhöht den Salzgehalt in den Böden, die dadurch unfruchtbar werden. Forscher vom Wissenschaftszentrum Weihenstephan (WZW) der Technischen Universität München (TUM) untersuchen Pflanzen, die auch auf versalzten Böden wachsen. Sie haben herausgefunden, wie Weizen mit dem Salzüberschuss umgeht und woran man seine Salztoleranz erkennt. Dieses Wissen ist die notwendige Grundlage für die Züchtung von Sorten, die auch bei Dürre und Wasserknappheit gute Ernte bringen.

Derzeit werden etwa 18 Prozent der landwirtschaftlichen Nutzfläche weltweit bewässert. Auf dieser Fläche wachsen etwa 40 Prozent der pflanzlichen Nahrungsmittel. Ständiger Wassermangel und häufig auftretende Dürreperioden bedrohen vor allem die Nahrungsmittelproduktion in Afrika. Aber auch weite Teile Asiens, die südlichen Staaten der USA und einige Regionen in Europa leiden unter Wasserknappheit.

Die Bewässerung der Felder in trockenen Gebieten führt zur Versalzung der Böden. Denn sie hebt den Grundwasserspiegel an, wodurch die Verdunstung zunimmt. Zurück bleibt das Salz, das im Wasser gelöst war. Was diesen Versalzungsprozess außerdem verstärkt: Die Bauern bewässern ihre Felder fast ausschließlich mit Grund- und Oberflächenwasser. Dieses ist aber im Vergleich zu Regenwasser sehr viel salziger - und mehr Salz im Boden ist Stress für Pflanzen: Sie wachsen schlechter und bringen weniger Ertrag.

Professor Urs Schmidhalter und seine Kollegen am Institut für Pflanzenernährung des WZW erforschen das komplexe Phänomen der Salztoleranz bei Pflanzen. Eine höhere Salzkonzentration im Boden hemmt die Wasseraufnahme der Pflanze. Sie kann über ihre Wurzeln nur dann Wasser aufnehmen, wenn die Salzkonzentration im Pflanzeninneren höher ist als im Bodenwasser. Die „durstige“ Pflanze will den Konzentrationsunterschied ausgleichen und nimmt Wasser auf. Ist die Salzkonzentration im Bodenwasser höher als in der Pflanze, funktioniert die Wasseraufnahme nicht mehr: Die Pflanze verwelkt. Daneben verkümmert sie aber auch, weil durch überhöhte Salzwerte Wachstumsenzyme gehemmt werden.

Doch einige Pflanzenarten trotzen solch widrigen Lebensbedingungen: Sie haben sich an trockene und salzige Bedingungen angepasst, wie sie in Wüsten, Steppen oder Meeresbuchten herrschen. Durch sehr wachshaltige Schutzschichten an ihren Blättern und eine besonders effiziente Regulation der Spaltöffnungen minimieren sie die Wasserabgabe. Über spezielle Drüsen können manche Pflanzen das zuviel aufgenommene Salz außerdem wieder abgeben. Wieder andere lagern es im Zellinneren ab, in eigens dafür gebildeten „Abfalleimern“.

Bei Anbauversuchen in Ägypten haben die Wissenschaftler des WZW entdeckt, dass auch einzelne Weizentypen überraschend gut mit salzigen Bedingungen zurechtkommen. Die Forscher haben die dafür verantwortlichen Vorgänge in einzelnen Pflanzenorganen und Wachstumsstadien identifiziert: Sie konnten im Detail zeigen, dass eine Veränderung der Leitgefäße in den Blättern den Nährstoff- und Wassertransport und damit die Ertragsbildung hemmt. Um die Erkenntnisse für die Pflanzenzüchtung nutzbar zu machen, haben die Pflanzenforscher im Gewächshaus und auf dem Feld verschiedene Merkmale geprüft, an denen man die „wüstentauglichen“ Weizentypen erkennen kann.

Sie haben herausgefunden, dass sich die salztoleranten Weizentypen in ihrer Blattfläche und in der Natrium- und Kalziumkonzentration ihrer obersten beiden Blätter sowie in der Anzahl unfruchtbarer Ährchen von „normalem“ Weizen unterscheiden. Mit Hilfe dieser Merkmale können Pflanzenzüchter neue Weizensorten entwickeln, die der weltweit zunehmenden Wasserknappheit trotzen – und so auch in Zukunft die Nahrungsmittelproduktion sichern.

Kontakt:
Prof. Dr. Urs Schmidhalter / PD Dr. Yuncai Hu
Lehrstuhl für Pflanzenernährung
Technische Universität München
85350 Freising-Weihenstephan
Tel.: +49 (0)8161 / 71-3394
E-Mail: hu@wzw.tum.de

Prof. Dr. Urs Schmidhalter | Technische Universität München
Weitere Informationen:
http://www.wzw.tum.de/pe/

Weitere Berichte zu: Salzkonzentration WZW

Weitere Nachrichten aus der Kategorie Agrar- Forstwissenschaften:

nachricht Gene gegen die Trockenheit
06.12.2019 | Goethe-Universität Frankfurt am Main

nachricht Süßkartoffel warnt ihre Nachbarn bei Befall durch einen einzigen Duftstoff
02.12.2019 | Max-Planck-Institut für chemische Ökologie

Alle Nachrichten aus der Kategorie: Agrar- Forstwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochgeladenes Ion bahnt den Weg zu neuer Physik

In einer experimentell-theoretischen Gemeinschaftsarbeit hat am Heidelberger MPI für Kernphysik ein internationales Physiker-Team erstmals eine Orbitalkreuzung im hochgeladenen Ion Pr9+ nachgewiesen. Mittels einer Elektronenstrahl-Ionenfalle haben sie optische Spektren aufgenommen und anhand von Atomstrukturrechnungen analysiert. Ein hierfür erwarteter Übergang von nHz-Breite wurde identifiziert und seine Energie mit hoher Präzision bestimmt. Die Theorie sagt für diese „Uhrenlinie“ eine sehr große Empfindlichkeit auf neue Physik und zugleich eine extrem geringe Anfälligkeit gegenüber externen Störungen voraus, was sie zu einem einzigartigen Kandidaten zukünftiger Präzisionsstudien macht.

Laserspektroskopie neutraler Atome und einfach geladener Ionen hat während der vergangenen Jahrzehnte Dank einer Serie technologischer Fortschritte eine...

Im Focus: Highly charged ion paves the way towards new physics

In a joint experimental and theoretical work performed at the Heidelberg Max Planck Institute for Nuclear Physics, an international team of physicists detected for the first time an orbital crossing in the highly charged ion Pr⁹⁺. Optical spectra were recorded employing an electron beam ion trap and analysed with the aid of atomic structure calculations. A proposed nHz-wide transition has been identified and its energy was determined with high precision. Theory predicts a very high sensitivity to new physics and extremely low susceptibility to external perturbations for this “clock line” making it a unique candidate for proposed precision studies.

Laser spectroscopy of neutral atoms and singly charged ions has reached astonishing precision by merit of a chain of technological advances during the past...

Im Focus: Ultrafast stimulated emission microscopy of single nanocrystals in Science

The ability to investigate the dynamics of single particle at the nano-scale and femtosecond level remained an unfathomed dream for years. It was not until the dawn of the 21st century that nanotechnology and femtoscience gradually merged together and the first ultrafast microscopy of individual quantum dots (QDs) and molecules was accomplished.

Ultrafast microscopy studies entirely rely on detecting nanoparticles or single molecules with luminescence techniques, which require efficient emitters to...

Im Focus: Wie Graphen-Nanostrukturen magnetisch werden

Graphen, eine zweidimensionale Struktur aus Kohlenstoff, ist ein Material mit hervorragenden mechanischen, elektronischen und optischen Eigenschaften. Doch für magnetische Anwendungen schien es bislang nicht nutzbar. Forschern der Empa ist es gemeinsam mit internationalen Partnern nun gelungen, ein in den 1970er Jahren vorhergesagtes Molekül zu synthetisieren, welches beweist, dass Graphen-Nanostrukturen in ganz bestimmten Formen magnetische Eigenschaften aufweisen, die künftige spintronische Anwendungen erlauben könnten. Die Ergebnisse sind eben im renommierten Fachmagazin Nature Nanotechnology erschienen.

Graphen-Nanostrukturen (auch Nanographene genannt) können, je nach Form und Ausrichtung der Ränder, ganz unterschiedliche Eigenschaften besitzen - zum Beispiel...

Im Focus: How to induce magnetism in graphene

Graphene, a two-dimensional structure made of carbon, is a material with excellent mechanical, electronic and optical properties. However, it did not seem suitable for magnetic applications. Together with international partners, Empa researchers have now succeeded in synthesizing a unique nanographene predicted in the 1970s, which conclusively demonstrates that carbon in very specific forms has magnetic properties that could permit future spintronic applications. The results have just been published in the renowned journal Nature Nanotechnology.

Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties – for example,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Analyse internationaler Finanzmärkte

10.12.2019 | Veranstaltungen

QURATOR 2020 – weltweit erste Konferenz für Kuratierungstechnologien

04.12.2019 | Veranstaltungen

Die Zukunft der Arbeit

03.12.2019 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Humane Papillomviren programmieren ihre Wirtszellen um und begünstigen so die Hautkrebsentstehung

12.12.2019 | Medizin Gesundheit

Urbane Gärten: Wie Agrarschädlinge von Städten profitieren

12.12.2019 | Biowissenschaften Chemie

Die „Luft“ im Ozean wird dünner - Sauerstoffgehalte im Meerwasser gehen weiter zurück

12.12.2019 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics