Verfahren zur Veränderung von Metalloberflächen

Much like a zipper, carbene molecules cooperate on a gold surface to join two rows of atoms into one row, resulting - step by step - in a new surface structure.
Image: Saeed Amirjalayer

Nanotechnologen der Universität Münster entwickeln Verfahren zur Veränderung von Metalloberflächen.

Ein Forscherteam der Westfälische Wilhelms-Universität (WWU) Münster hat ein molekulares Werkzeug entwickelt, das auf atomarer Ebene ermöglicht, gezielt die Struktur einer Metalloberfläche zu verändern. Diese Umstrukturierung erfolgt an der Oberfläche durch einzelne Moleküle, sogenannte N-heterozyklische Carbene, ähnlich eines Reißverschlusses. Die Arbeit wurde in der Fachzeitschrift „Angewandte Chemie International Edition“ publiziert.

In vielen technologisch-relevanten Bereichen, wie zum Beispiel der Katalyse, der Sensorik sowie der Batterieforschung, spielt die Oberfläche von Metallen eine entscheidende Rolle. So erfolgt beispielsweise die Herstellung von vielen chemischen Verbindungen in der Industrie an Metalloberflächen. Deren atomare Struktur bestimmt, ob und wie Moleküle miteinander reagieren. Zugleich beeinflusst die Oberflächenstruktur eines Metalls seine elektronischen Eigenschaften. Dies ist insbesondere wichtig für die Effizienz von elektronischen Bauteilen in Batterien. Weltweit arbeiten Wissenschaftler intensiv an der Entwicklung neuartiger Verfahren, um die Struktur von Metalloberflächen gezielt auf atomarer Ebene zu modifizieren.

Ein Forscherteam von Physikern und Chemikern um Dr. Saeed Amirjalayer von der Westfälischen Wilhelms-Universität Münster (WWU) hat jetzt ein molekulares Werkzeug entwickelt, das es auf atomarer Ebene ermöglicht, gezielt die Struktur einer Metalloberfläche zu verändern. Mit Hilfe von Computersimulationen konnte vorhergesagt werden, dass diese Umstrukturierung der Oberfläche durch einzelne Moleküle, sogenannte N-heterozyklische Carbene, ähnlich eines Reißverschlusses erfolgt. Dabei arbeiten mindestens zwei Carben-Moleküle miteinander, um die Struktur der Oberfläche Atom-für-Atom umzusortieren.

Die Wissenschaftler wiesen die „reißverschlussartige“ Funktionsweise, bei der die Carbene-Moleküle zwei Atomreihen auf einer Goldoberfläche zu einer Reihe zusammenführen, auch experimentell nach. Die Arbeit wurde in der Fachzeitschrift „Angewandte Chemie International Edition“ publiziert.

In früheren Arbeiten zeigten die münsterschen Wissenschaftler bereits, dass die Carben-Moleküle stabil sind und sich gut auf Gold-Oberflächen bewegen. Jedoch konnte bisher keine gezielte Veränderung von Metalloberflächen durch die Moleküle nachgewiesen werden. In ihrer aktuellen Studie wiesen die Forscher erstmals nach, dass durch die Zusammenarbeit der Carben-Moleküle die Struktur der Oberflächen präzise modifiziert wird.

„Für die weitreichende Änderung der Oberflächenstruktur, verhalten sich die Carben-Moleküle wie ein molekularer Schwarm, d.h. sie arbeiten als Gruppe zusammen. Basierend auf dem ‚reißverschlussartigen‘ Prinzip werden die Oberflächenatome gezielt umsortiert und nach Abschluss der ‚Umbauarbeiten‘ können die Moleküle von der Oberfläche entfernt werden“, erläutert Saeed Amirjalayer.

Das neue Verfahren ermöglicht, neue Materialien mit gezielten chemischen und physikalischen Eigenschaften zu entwickeln – ohne makroskopische Werkzeuge. „In der industriellen Anwendung werden häufig makroskopische Werkzeuge, wie beispielsweise Pressen oder Walzen, verwendet. In der Biologie übernehmen dagegen diese Aufgaben meist bestimmte Moleküle oder Molekülklassen.

Unsere Arbeit zeigt eine vielversprechende künstliche beziehungsweise synthetisch hergestellte Molekülklasse, die einen ähnlichen Ansatz verwendet, um die Oberfläche zu modifizieren“, erklärt Saeed Amirjalayer. Das Forscherteam erhofft sich, dass ihr Verfahren zukünftig genutzt wird, um beispielsweise neuartige Elektroden zu entwickeln oder um chemische Reaktionen an Oberflächen zu optimieren.

Förderung:
Die Studie erhielt finanzielle Unterstützung von der Deutschen Forschungsgemeinschaft unter anderem im Rahmen des Sonderforschungsbereichs SFB 858.

Wissenschaftliche Ansprechpartner:

Dr. Saeed Amirjalayer
Stimuli-Responsive Nanomaterials Group
Physikalisches Institut
Westfälische Wilhelms-Universität Münster
Center for Nanotechnology (CeNTech)
Heisenbergstr. 11
D-48149 Münster

Email: s.amirjalayer@wwu.de
Fon: +49 (0)251 83 63919

Originalpublikation:

Saeed Amirjalayer, Anne Bakker, Matthias Freitag, Frank Glorius and Harald Fuchs (2020): Kooperative Zusammenarbeit von N-heterocyclischen Carbenen auf einer Goldoberfläche. Angewandte Chemie; DOI: 10.1002/anie.202010634

https://www.uni-muenster.de/

Media Contact

Dr. Kathrin Kottke Stabsstelle Kommunikation und Öffentlichkeitsarbeit
Westfälische Wilhelms-Universität Münster

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Massenreduzierte Fräswerkzeuge senken Energiekosten

Beim Fräsprozess mit Holz werden häufig mehrere Arbeitsgänge zusammengelegt, um Fertigungszeit zu sparen. Dazu wird ein Kombinationswerkzeug mit vielen unterschiedlichen Scheibenfräsern bestückt. Dementsprechend hoch ist das Gewicht – und die…

Neues Material zur CO₂-Abtrennung aus Industrieabgasen

Klimaschutz: Bayreuther Chemiker entwickeln neues Material zur CO₂-Abtrennung aus Industrieabgasen. Chemiker der Universität Bayreuth haben ein Material entwickelt, das einen wichtigen Beitrag zum Klimaschutz und zu einer nachhaltigen Industrieproduktion leisten…

Auf dem Weg zu einem geschlossenen Kohlenstoffkreislauf

Wie überkritisches Kohlendioxid die elektrochemische Reduktion von CO2 beeinflusst Auf dem Weg zu einer klimaneutralen Industrie spielt die elektrochemische Reduktion von Kohlendioxid eine wichtige Rolle: Mit ihrer Hilfe lässt sich…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close