Produktivitätssteigerung und Prozessoptimierung für die UKP-Materialbearbeitung

Mit dem »Multi Beam Scanner« erstellter periodischer Schriftzug auf einer Stahlfolie. Bildquelle: Pulsar Photonics GmbH

Materialbearbeitung mit Ultrakurzpulslasern (UKP-Lasern) bewegt sich seit einigen Jahren auf der Erfolgswelle. Grund hierfür sind die herausragenden Eigenschaften dieser Laser sowie die Möglichkeit, nahezu alle Materialien mit höchster Präzision zu bearbeiten.

Das Anwendungsspektrum wächst stetig, so dass die Wachstumsraten im Bereich von etwa 20-25 Prozent liegen. Typische Einsatzgebiete der Technologie sind die Werkzeugtechnik, das Schneiden und Bohren für die Herstellung von Mikrobauteilen, Sieben und Filtern sowie Dünnschichtanwendungen im Bereich der Solartechnik und der OLED-Herstellung. Allerdings stieß die bisher eingesetzte Technik in der Mikrobearbeitung in puncto Effizienz oft an systemimmanente Grenzen.

Wirtschaftliche Mikrostrukturierung mit dem UKP-Laser

Derzeit werden für die großflächige Oberflächenmikrostrukturierung daher hauptsächlich Nanosekundenlaser (ns-Laser) eingesetzt. Aufgrund ihrer hohen Wirtschaftlichkeit sind sie sehr gut auf dem Markt etabliert. Jedoch ist hier die Auflösung der Mikrostrukturierung durch die Entstehung von Schmelzeffekten begrenzt, häufig müssen Bauteile aufwändig nachbearbeitet werden.

Eine Mikrostrukturierung mit dem UKP-Laser dagegen erzeugt völlig bearbeitungsfreie Oberflächenstrukturen mit lateralen Genauigkeiten im Bereich weniger Mikrometer und einer Tiefenauflösung im Bereich von hundert Nanometern.

Aufgrund des verdampfungsdominierten Abtragverhaltens lassen sich mit dem UKP-Laser im Vergleich zum ns-Laser lediglich eine um etwa den Faktor 10 geringere Volumenabtragrate erzielen, was seine Nutzung für die Massenproduktion mikrostrukturierter Bauteile aus wirtschaftlicher Sicht oft uninteressant macht. Hinzu kommt, dass mit den gängigen UKP-Lasersystemen im Bereich von 50 bis 100 Watt meist nur maximal 20 Prozent der zur Verfügung stehenden Laserenergie genutzt werden kann.

Um den Nutzungsgrad von UKP-Lasern in diesem Bereich zu erhöhen, haben Forscher am Fraunhofer ILT ein Verfahren zur Parallelisierung des Laserstrahlabtrags entwickelt. Mit der mittlerweile erprobten Multistrahltechnik lässt sich der Laserstrahl auf mehr als 100 Teilstrahlen aufspalten, das Werkstück kann also parallel an 100 Punkten bearbeitet werden, was die Bearbeitungsgeschwindigkeit entsprechend erhöht. Durch diese Technologie können die Leistungsreserven aktueller Hochleistungs-UKP-Lasersysteme nahezu vollständig ausgeschöpft und auf dem Werkstück genutzt werden.

Werkzeugsystem mit intelligenter Vernetzung

Die Pulsar Photonics GmbH, ein Spin-off des Fraunhofer ILT, hat ein Werkzeugsystem entwickelt, welches neben der optionalen Strahlteilung auch eine intelligente Messtechnik integriert hat. Während die Parallelisierung im Wesentlichen die Prozesseffizienz der eigentlichen Bearbeitung steigert, erleichtert und automatisiert die integrierte Messsensorik zum einen die schnelle Parameterfindung beim Einrichtungsprozess und zum anderen die Qualitätskontrolle nach dem Produktionsprozess. Die oft zeitintensive Rüstung wird deutlich verkürzt.

System kann nicht nur für die Oberflächenstrukturierung eingesetzt werden, sondern auch für viele weitere Anwendungen wie dem Bohren oder Feinschneiden. 

Periodische Strukturen für die großflächige Oberflächenfunktionalisierung

Aufbaubedingt ist die Multistrahltechnologie zunächst nur für die Herstellung periodischer Muster und fester Strukturanordnungen auf Bauteilen oder für die parallele Bearbeitung mehrerer Bauteile mit gleichen Strukturen geeignet. In vielen Anwendungsfällen sind aber gerade periodische Strukturen gefragt, wie beispielsweise bei der großflächigen Funktionalisierung von Oberflächen zur Reibungsreduktion oder der Herstellung von Masken und Mikrofiltern aus dünnen Folien.

Hannover Messe

Auf dem Gemeinschaftsstand »Junge innovative Unternehmen« in Halle 17, Stand C04/2 der Hannover Messe vom 7. bis zum 11. April 2014 präsentieren die Experten von Pulsar Photonics das Werkzeugsystem mit »Multi Beam Scanner«, welcher nun erstmals als kommerzielles Produkt verfügbar ist. Sie zeigen, welche Erweiterungsmöglichkeiten das Werkzeugsystem für vielseitige Anwendungen bietet. Wissenschaftler des Fraunhofer ILT stellen auf dem Fraunhofer-Gemeinschaftsstand Produktion, Halle 17/F14 Verfahren zur funktionalen Beschichtung und zum Mikrofügen vor und zeigen vielfältige Einsatzmöglichkeiten des UKP-Lasers.

International Laser Technology Congress AKL‘14

Wie sich die Effizienz der UKP-Materialbearbeitung durch eine optimale Auslegung der Systemtechnik steigern lässt, erklärt Dipl.-Ing. Joachim Ryll, Pulsar Photonics GmbH, in seinem Vortrag auf dem AKL’14 in Aachen im Rahmen der Session »Ultrakurzpulslaser Essentials – Anwendungen« am 9. Mai 2014.

Über die Pulsar Photonics GmbH

Die Pulsar Photonics GmbH ist ein 2013 gegründetes technologieorientiertes Spin-off des Fraunhofer-Instituts für Lasertechnik ILT. Das Leistungsspektrum des Unternehmens umfasst die Entwicklung und den Vertrieb integrierter Werkzeug- und Messsysteme für die Materialbearbeitung mit Kurz- und Ultrakurzpulslasern.

Ansprechpartner

Dipl.-Phys. Stephan Eifel
Pulsar Photonics GmbH
Telefon +49 241 8906-8079
eifel@pulsar-photonics.de
Steinbachstraße 15
52074 Aachen

http://www.pulsar-photonics.de
http://www.lasercongress.org
http://www.ilt.fraunhofer.de

Media Contact

Petra Nolis Fraunhofer-Institut

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer