Mit dünnen Lithium-Schichten zu hohen Energiedichten

Der Bedarf an Lithium-Ionen-Batterien wird für vielfältige Anwendungen auch in Zukunft steigen
© Chesky / shutterstock; Bildquelle in Druckqualität: www.fep.fraunhofer.de/presse

Innerhalb des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Gemeinschaftsprojektes „nextBatt“ (Förderkennzeichen: L1FHG42421) sollten ressourceneffiziente Produktionsprozesse für Batterieanoden der nächsten Generation entwickelt werden. Am Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP wurden dazu neue Materialkombinationen und eine effiziente Fertigungstechnologie erarbeitet. Das Institut stellt die jüngsten Forschungsergebnisse auf der Konferenz SVC 2022, vom 3. bis 5. Mai 2022, in Long Beach/USA, auf dem Stand Nr. 436 vor.

Der Bedarf an Lithium-Ionen-Batterien (LIB) steigt rasant. Das Fraunhofer-Institut für System- und Innovationsforschung ISI erwartete 2020, dass die Nachfrage nach Lithium-Ionen-Zellen allein für die Elektromobilität bis 2030 um den Faktor 20 bis 40 steigen wird.

Damit nicht auch der Einsatz von Ressourcen mit dem erhöhten Bedarf an Batterien unermesslich steigt, arbeiten Wissenschaftlerinnen und Wissenschaftler weltweit fieberhaft an Verbesserungen. Die Partner des 2021 durchgeführten Projektes „nextBatt“ – neben dem Fraunhofer FEP die Fraunhofer-Institute für Werkstoff- und Strahltechnik IWS, für Solare Energiesysteme ISE und für Schicht- und Oberflächentechnik IST – leisten dazu einen wesentlichen Beitrag.

„Für Lithium-Ionen-Batterien sind Steigerungen der Energiedichte von bis zu 65 % möglich.“, prognostiziert Dr. Stefan Saager, Projektleiter am Fraunhofer FEP. „Dies kann durch den Ersatz herkömmlicher Graphitanoden durch Anoden auf Basis von Silizium und zukünftig auch metallischem Lithium erreicht werden. Mit den ressourceneffizienten Prozesstechnologien am Fraunhofer FEP gelang es uns bereits, reine metallische Lithiumschichten und auch Lithium-Silizium-Verbindungsschichten in produktionsrelevanten Maßstäben herzustellen.“

Üblicherweise werden Lithiumschichten in Form von dünnen Folien durch Walzprozesse gefertigt, die auch das Verwenden von Schmiermitteln nötig machen. Am Fraunhofer FEP jedoch werden die Lithiumschichten durch thermisches Aufdampfen im Vakuum ohne verunreinigende Zusätze in einer Dicke von 1 – 20 Mikrometer hergestellt. Dadurch können sehr reine und vor allem dünne metallische Lithiumschichten in reproduzierbarer Weise erzeugt werden. Bei diesem Prozess wird Lithiumgranulat ins Vakuum überführt, in einen Tiegel gefüllt und anschließend auf Temperaturen von 500 – 700 °C erwärmt. Das Lithium wird aufgeschmolzen und schließlich verdampft. Ähnlich wie sich Wasser an Deckeln von Kochtöpfen sammelt, wird der sich ausbreitende Lithiumdampf auf einem Substrat abgeschieden. Dieses Substrat wird dazu in kontrollierter Weise über die Lithiumdampfquelle bewegt, sodass darauf eine Lithiumschicht mit vorgegebener Dicke kondensiert.

Eine sehr große Herausforderung lag bei der Technologieentwicklung bereits im Einrichten der Prozesse, aber auch der Arbeitsumgebungen, da Lithium eine extrem hohe Reaktivität besitzt. Lithium reagiert nicht nur mit dem Sauerstoff in der Luft, sondern auch mit Stickstoff. Mit Wasser verbindet sich Lithium außerdem zu stark basischem Lithiumhydroxid unter Freisetzung von Wasserstoff. Diese Reaktionen verlaufen bekanntlich stark exotherm, was den Umgang erschwert und erhöhte Ansprüche an die Arbeitssicherheit erfordert. Daher kann Lithium nur unter einer inerten Argon-Atmosphäre gehandhabt werden. Darüber hinaus sind hochreine Lithiumschichten für das Erreichen einer guten Batterie-Performance essenziell. Die Anlagen des Fraunhofer FEP wurden für Experimente mit luftempfindlichen Materialien wie Lithium entsprechend vorbereitet.

Ein großer Vorteil der Technologie ist, dass mit dem Aufdampfverfahren auch Verbindungsschichten in Kombination mit anderen Materialien, wie Silizium, erzeugt werden können. Dazu wird „einfach“ eine weitere Dampfquelle mit einem anderen Ausgangsstoff daneben installiert. Die verschiedenen Materialien vermischen sich in den beiden überlagerten Dampfströmen und erzeugen auf dem Substrat eine Verbindungsschicht mit der gewünschten Zusammensetzung. So sind sehr vielversprechende Materialkombinationen realisierbar, die auf andere Weise nicht zu erzeugen wären. Zudem kann man mit diesem Verfahren sehr hohe Beschichtungsraten erzielen – ein wichtiges Kriterium für die Überführung der Technologie in eine Massenproduktion.

Die bislang am Fraunhofer FEP hergestellten reinen Lithiumschichten wurden am Fraunhofer IWS hinsichtlich ihrer elektrochemischen Eigenschaften untersucht. Dabei zeigte sich, dass ca. 80 % des abgeschiedenen Lithiums elektrochemisch aktiv war – also in einer Batterie für chemische Reaktionen zur Speicherung von Energie zur Verfügung stehen kann. Eine weitere Steigerung über 90 % ist durch die Optimierung von Prozessschritten in Aussicht. Diese Verbesserung umfasst verschiedene Verfahren zur Substratreinigung und -vorbehandlung, die Beschichtungstechnologie selbst sowie Veredelungsverfahren durch Nachbehandlung. Die Reduktion von so genanntem „totem Lithium“ ist ein wesentlicher Schlüssel zur Effizienzsteigung in Batterien und Gegenstand ausgedehnter internationaler Forschung.

Am Fraunhofer FEP stehen hierfür Versuchs- und Pilotanlagen zur Verfügung, mit denen bspw. metallische Platten und Bänder oder Kunststofffolien im effizienten Rolle-zu-Rolle-Verfahren verarbeitet werden können. Im Projektkonsortium werden weitere vielversprechende Technologien zur Steigerung der Batterieleistung entwickelt, wie zum Beispiel Verfahren zur Oberflächenbeschichtung und Verarbeitung von Pulvern, Metallisierung von Kunststofffolien für leichte Stromkollektoren oder Plasmaverfahren zur Herstellung alternativer Elektrodenmaterialen. Durch die Nähe zu den Partnern sind unter anderem umfassende Charakterisierungsmöglichkeiten am Fraunhofer IWS anwendbar, ohne lange Lager- und Transportzeiten der sensiblen Materialien berücksichtigen zu müssen.

Die Fraunhofer-Institute stehen bereits mit verschiedenen Partnern aus Forschung und Industrie in Kontakt. Die Wissenschaftler schätzen, dass bei einer Intensivierung der Forschungsaktivitäten die Beschichtungstechnologie innerhalb der nächsten fünf Jahre Einzug in die Produktion von Batterien der nächsten Generation halten könnte. Das Projekt „nextBatt“ stellt dazu einen entscheidenden Schritt als Wegbereiter dar.

Über das Projekt „nextBatt-resourceneffiziente Produktionsprozesse für Batterienanoden der nächsten Generation“

Gefördert durch das Bundesministerium für Bildung und Forschung (BMBF) unter dem
Förderkennzeichen: L1FHG42421
Laufzeit: 01.02.2021 – 31.12.2021
Partner: Fraunhofer FEP, Fraunhofer IWS, Fraunhofer ISE, Fraunhofer IST

Pressekontakt:
Frau Annett Arnold
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP
Telefon +49 351 2586 333 | presse@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Deutschland | www.fep.fraunhofer.de

Weitere Informationen:

https://s.fhg.de/E3f

Media Contact

Franziska Lehmann Unternehmenskommunikation
Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Alle Nachrichten aus der Kategorie: Verfahrenstechnologie

Dieses Fachgebiet umfasst wissenschaftliche Verfahren zur Änderung von Stoffeigenschaften (Zerkleinern, Kühlen, etc.), Stoffzusammensetzungen (Filtration, Destillation, etc.) und Stoffarten (Oxidation, Hydrierung, etc.).

Unter anderem finden Sie Wissenswertes aus den Teilbereichen: Trenntechnologie, Lasertechnologie, Messtechnik, Robotertechnik, Prüftechnik, Beschichtungsverfahren und Analyseverfahren.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Vorstoß bei Entwicklung proteinbasierter Wirkstoffe gegen Immunerkrankungen

Max-Planck-Forscher erzielen Durchbruch mithilfe von computerbasiertem Proteindesign. Proteine übernehmen im menschlichen Körper zahlreiche Stoffwechselfunktionen. Ihre spezifischen Aufgaben bestimmen sich durch ihre räumliche Molekülstruktur, deren Architektur anhand kompakter Faltungen ein genetischer…

Lichtenergie zur Herstellung kleiner Molekülringe

Chemikern um Prof. Dr. Frank Glorius von der Westfälischen Wilhelms-Universität Münster ist es gelungen, neue medizinisch relevante kleine Molekülringe herzustellen. Diese Moleküle sind schwierig zu synthetisieren, weil sie besonders empfindlich…

Ein potenzieller Jungbrunnen für das Immunsystem

Im Alter nimmt die Leistung der Immunabwehr ab, ältere Menschen sind anfälliger für Infektionen. Forschungsteams aus Würzburg und Freiburg haben jetzt einen Ansatz entdeckt, über den sich dieser Prozess bremsen…

Partner & Förderer