Wissenschaftler identifizieren neuen Wirkbereich für Genregulationsenzym

Die Studie, an der auch Forscherteams der Universität von Kyoto in Japan und der amerikanischen Emory University beteiligt waren, ist in der aktuellen Online-Ausgabe von Nature Chemical Biology publiziert (doi 10.1038/nchembio.88 | http://www.nature.com/nchembio/journal/vaop/ncurrent/abs/nchembio.88.html).

Das menschliche Erbgut enthält eine Vielzahl von Genen als Informationseinheiten, die im Verlauf der Entwicklung eines Menschen durch „Genregulation“ gezielt aktiviert und deaktiviert werden. Die Enzyme, die für die Aktivitätsregulation verantwortlich sind, sogenannte DNA-Methyltransferasen, können bestimmte Zielsequenzen im Erbgut erkennen und durch die Anlagerung von Methylgruppen an Schlüsselpositionen das Ablesen der nachfolgenden Gensequenz und somit ihre Aktivierung verhindern.

Genexpression kann auch durch andere Proteine im Zellkern, die Histone, beeinflusst werden, die für eine enge räumliche Bündelung des Erbgutes in der Zelle sorgen. Ähnlich wie die DNA selbst können Histon-Proteine durch die Anlagerung von Methylgruppen so modifiziert werden, dass sich ihr regulatorischer Einfluss auf Genaktivität verändert. Da Störungen der Genregulation Krankheiten und Entwicklungsdefekte auslösen können, ist das Funktionsspektrum der beteiligten Enzyme in vielen Fällen ebenso entscheidend für die Genexpression, wie die Erbinformation selbst.

Die Forscher um Albert Jeltsch fanden nun heraus, dass die menschliche Methyltransferase G9a, von der bisher nur bekannt war, dass sie die Aminosäure Lysin 9 in Schlüsselsequenzen von Histonen methylieren kann, auch Proteine außerhalb von Histonen durch Anlagerung von Methylgruppen modifizieren und so deren Funktion beeinflussen kann. „Unsere Entdeckung legt nahe, dass der Prozess der Methylierung von Biomolekülen als Signalsystem zur Steuerung von enzymatischen Prozessen in Zellen weit über die sehr spezifische Wirkung der Genregulation hinaus eine wichtige Rolle spielt“, sagt Albert Jeltsch über die Bedeutung des Forschungsergebnisses. „Bei der Erforschung der gesamten Komplexität dieser Steuerungsprozesse stehen wir in vieler Hinsicht erst am Anfang.“

Die Forscher verwendeten die sogenannte Peptid SPOT Synthese, um weitere menschliche Zielproteine außerhalb von Histonen zu identifizieren. Mit dem Verfahren, dass der gleichzeitigen künstlichen Synthese von systematischen Variationen eines Proteins dient, erzeugten sie insgesamt 420 Varianten des ursprünglich bekannten Enzymsubstrates. Anhand der Reaktionskinetiken dieser künstlichen Testsubstrate mit der Methyltransferase G9a konnten insgesamt 8 alternative Zielsequenzen identifiziert werden, an denen eine schnelle und effektive Methylierung erfolgt und die darüber hinaus als potentielle Zielproteine tatsächlich in menschlichen Zellen auftreten.

Fragen zu der Studie beantwortet:
Prof. Dr. Albert Jeltsch
http://www.jacobs-university.de/directory/ajeltsch/index.php
Professor of Biochemistry
Tel: +49 (0)421 200-3247
a.jeltsch@jacobs-university.de

Media Contact

Dr. Kristin Beck idw

Alle Nachrichten aus der Kategorie: Studien Analysen

Hier bietet Ihnen der innovations report interessante Studien und Analysen u. a. aus den Bereichen Wirtschaft und Finanzen, Medizin und Pharma, Ökologie und Umwelt, Energie, Kommunikation und Medien, Verkehr, Arbeit, Familie und Freizeit.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ordnung in der Unordnung

Dichtefluktuationen in amorphem Silizium entdeckt Erstmals hat ein Team am HZB mit Röntgen- und Neutronenstreuung an BESSY II und BER II in amorphem Silizium mit einer Auflösung von 0.8 Nanometern…

Das Protein-Kleid einer Nervenzelle

Wo in einer Nervenzelle befindet sich ein bestimmter Rezeptor? Ohne Antwort auf diese Frage ist es fast unmöglich, Rückschlüsse über die Funktion dieses Proteins zu ziehen. Zwei Wissenschaftlerinnen am Max-Planck-Institut…

40 Jahre alter Katalysator birgt Überraschungen für die Wissenschaft

Wirkmechanismus des industriellen Katalysators Titansilikalit-1 basiert auf Titan-Paaren/Entdeckung wegweisend für die Katalysatorentwicklung Der Katalysator “Titansilikalit-1“ (TS-1) ist nicht neu: Schon vor fast 40 Jahren wurde er entwickelt und seine Fähigkeit…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close