Wenn Licht und Elektronen gemeinsam rotieren

Ein Infrarotpuls (blau) regt die Elektronendynamik in massivem Na3Bi an. Aufgrund der starken Spin-Bahn-Kopplung folgen die "Spin-up"-Elektronen (roter Pfeil) und die "Spin-down"-Elektronen (blauer Pfeil) unterschiedlichen Bewegungen
Bild: Jörg Harms / Nicolas Tancogne-Déjean, MPSD

Theoretiker am MPSD haben gezeigt, wie die Kopplung von intensiven Lasern an die Bewegung von Elektronen und deren Spins die Emission von Licht auf ultraschnellen Zeitskalen beeinflusst. Ihre Arbeit wurde in npj computational materials veröffentlicht.

Elektronen, die in jeder Art von Materie vorkommen, sind geladene Teilchen und reagieren daher auf die Einwirkung von Licht. Wenn ein intensives Lichtfeld auf einen Festkörper trifft, erfahren diese Teilchen eine Kraft, die so genannte Lorentz-Kraft, die sie antreibt und eine exquisite Dynamik hervorruft, welche die Eigenschaften des Materials widerspiegelt. Dies wiederum führt dazu, dass die Elektronen Licht in verschiedenen Farben aussenden – die sogenannten hohen harmonischen Schwingungen.

Wie genau sich die Elektronen unter dem Einfluss des Lichtfeldes bewegen, hängt von den Eigenschaften des Festkörpers ab, einschließlich seiner Symmetrien, Bandstruktur und Topologie, sowie von der Art des Lichtimpulses. Außerdem sind Elektronen wie Kreisel: Sie drehen sich entweder im oder gegen den Uhrzeigersinn, eine Eigenschaft, die in der Quantenmechanik als „Spin“ der Elektronen bezeichnet wird.

In einer kürzlich erschienenen Arbeit untersuchte das MPSD-Team, wie das Licht und der Spin der Elektronen in Na₃Bi über einen als Spin-Bahn-Kopplung bezeichneten Effekt interagieren können. Na₃Bi ist ein topologisches Material, das als Dirac-Semimetall (das dreidimensionale Analogon von Graphen) bekannt ist.

Der relativistische Effekt koppelt den Spin des Teilchens an seine Bewegung innerhalb eines Potenzials, welches durch intensives Licht auf einer ultraschnellen Zeitskala verändert werden kann. Das Verständnis, wie die Spin-Bahn-Kopplung die Elektronendynamik auf diesen Zeitskalen beeinflusst, ist ein wichtiger Schritt in der Erforschung der Elektronendynamik in komplexen Quantenmaterialien. In der Tat ist es die Spin-Bahn-Kopplung, die Quantenmaterialien für künftige technologische Anwendungen oft erst interessant macht. Es wird erwartet, dass sie zur nächsten Generation elektronischer Geräte führt, nämlich zu topologischen elektronischen Systemen.

Die Autoren zeigen, wie die Spin-Bahn-Kopplung die Geschwindigkeit der Elektronen in den Elektronenbändern von Festkörpern beeinflusst und wie ein Magnetfeld wirkt, das vom Spin der Elektronen abhängt. Sie zeigen, wie sich Änderungen der Elektronengeschwindigkeit auf die Elektronendynamik in Na₃Bi auswirken können und dass dieser Effekt manchmal nachteilige Folgen für die Erzeugung von Obertönen hoher Ordnung haben kann. Obwohl Na₃Bi nicht magnetisch ist, hat das Team gezeigt, dass der Spin der Elektronen für die Dynamik wichtig ist, denn er ist an das von den Elektronen empfundene Potenzial gekoppelt, welches durch das intensive Lichtfeld verändert wird.

Eine weitere wichtige Erkenntnis ist, dass die Spin-Bahn-Kopplung die Eigenschaften der emittierten hohen Harmonischen verändern kann, z. B. Ihre zeitliche Abfolge. Diese Änderungen enthalten entscheidende Informationen über die interne Elektronendynamik. Insbesondere zeigen die Autoren, dass die ultraschnelle Spindynamik, die durch den Spinstrom gegeben ist, in der Eigenschaft des emittierten Lichts kodiert wird. In Anbetracht der Tatsache, dass es derzeit schwierig ist, Spinströme zu messen, eröffnet die vorliegende Arbeit interessante Perspektiven für die Verwendung von intensivem Licht zur Durchführung von hochharmonischer Spektroskopie von Spinströmen sowie von Magnetisierungsdynamik oder ungewöhnlichen Spinstrukturen, die in Quantenmaterialien vorkommen können.

Diese Arbeit dient als Plattform für ein besseres Verständnis des Zusammenhangs zwischen Spin-Bahn-Kopplung, Spinstrom, Topologie und Elektronendynamik in Festkörpern, die von starken Feldern angetrieben werden – ein entscheidender Schritt zur Entwicklung von Petahertz-Elektronik auf der Grundlage von Quantenmaterialien.

Wissenschaftliche Ansprechpartner:

Nicolas Tancogne-Déjean, Erstautor: nicolas.tancogne-dejean@mpsd.mpg.de

Originalpublikation:

https://www.nature.com/articles/s41524-022-00831-6

Weitere Informationen:

https://www.mpsd.mpg.de/637251/2022-07-tancogne-electronspin

Media Contact

Jenny Witt Presse- und Öffentlichkeitsarbeit
Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer