Wärmekraftmaschinen in der Mikrowelt

Einzel-Ionen Wärmekraftmaschine: Der Spin eines Leuchtelektrons (grüner Pfeil) wird von Lasern abwechselnd erwärmt und gekühlt. Die dabei fließende Wärme wird in einem „Schwungrad“ gespeichert, das durch die Bewegung des Ions gegeben ist. Abb./©: QUANTUM, Institut für Physik, JGU

Wärmekraftmaschinen – ein grundlegendes physikalisches Konzept mit direkten technischen Anwendungen – wandeln Wärmeenergie in nutzbare Arbeit um, zum Beispiel zum Antrieb eines Fahrzeuges.

Verschiedene Typen von Wärmekraftmaschinen wie Verbrennungsmotoren oder Turbinen erleichtern unser modernes Leben und bestimmen es sogar zu einem großen Teil.

So unterschiedlich diese Typen sind, so werden sie doch einheitlich von den gleichen physikalischen Gesetzen – der Thermodynamik – beschrieben. Versucht man jedoch solche Maschinen auf mikroskopische oder sogar atomare Skalen zu verkleinern, gelten andere Gesetzmäßigkeiten: Hier treten Fluktuationen auf, das heißt der Betrieb einer solchen Maschine ist nicht gleichmäßig und einem gewissen Maß an Zufall unterworfen.

Mainzer Forscher um Dr. Ulrich Poschinger und Prof. Dr. Ferdinand Schmidt-Kaler haben ein experimentelles Szenario durchgespielt, in dem dieser Sachverhalt klar zutage tritt.

Ein einzelnes gefangenes atomares Ion fungiert als Wärmekraftmaschine, indem es mit Laserstrahlung abwechselnd gekühlt und aufgeheizt wird. Die dabei gewonnene Energie wird in Schwingungen dieses Ions übersetzt und gespeichert. Nach einigen Operationszyklen wird der physikalische Zustand dieser Schwingungen vollständig rekonstruiert.

Die Analyse der experimentellen Daten, in Zusammenarbeit mit den theoretischen Physikern Dr. Mark Mitchison und Prof. Dr. John Goold vom Trinity College Dublin, zeigen, dass nur ein Teil der gewonnenen Energie sinnvoll weiterverwendet werden könnte, der andere Teil manifestiert sich in zufälligen thermischen Bewegungen des Ions.

Diese Ergebnisse sind ein Mainzer Beitrag im Rahmen der Forschergruppe 2724 „Thermische Maschinen in der Quantenwelt“ und wurden als Highlight im aktuellen Band des internationalen Journals Physical Review Letters publiziert. Die Ergebnisse bilden eine wichtige Basis zum Verständnis von Energietransferprozessen in mikroskopischen Systemen und ebnen den Weg zu weiterführenden Studien, die den Einfluss der Quantenphysik auf solche Systeme und Prozesse zeigen sollen.

Bildmaterial:
http://www.uni-mainz.de/bilder_presse/08_physik_quantum_waermekraftmaschine_ion….
Einzel-Ionen Wärmekraftmaschine: Der Spin eines Leuchtelektrons (grüner Pfeil) wird von Lasern abwechselnd erwärmt und gekühlt. Die dabei fließende Wärme wird in einem „Schwungrad“ gespeichert, das durch die Bewegung des Ions gegeben ist.
Abb./©: QUANTUM, Institut für Physik, JGU

Dr. Ulrich Poschinger
Quanten-, Atom- und Neutronenphysik (QUANTUM)
Institut für Physik
Johannes Gutenberg-Universität Mainz
55099 Mainz
Tel. +49 6131 39-25954
E-Mail: poschin@uni-mainz.de
https://www.quantenbit.physik.uni-mainz.de/members-of-ag-schmidt-kaler/

David von Lindenfels et al.
A spin heat engine coupled to a harmonic-oscillator flywheel
Physical Review Letters, 22. August 2019
DOI: 10.1103/PhysRevLett.123.080602
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.123.080602
https://physics.aps.org/synopsis-for/10.1103/PhysRevLett.123.080602

https://www.quantenbit.physik.uni-mainz.de/ – Quantenbit AG an der JGU

Media Contact

Petra Giegerich idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer