Von Nervenzellen Rechnen lernen

Experimenteller Aufbau der dendritischen Komponenten von ADOPD bestehen aus Lichtleiterstrecken (aufgerollt), Verbindern (silbern) und optischen Rechenkomponenten (farbig, bzw. schwarz).
Ingo Fischer/Apostolos Argyris

Universität Göttingen koordiniert Forschungsprojekt zur Lichtleitertechnologie

Die Universität Göttingen leitet das neue europäische Projekt „Adaptive Optische Dendriten (ADOPD)“ zur Erforschung alternativer, ultra-schneller Rechnerkomponenten basierend auf neuronalen Systemen. Das Projekt unter Leitung von Prof. Dr. Florentin Wörgötter und Dr. Christian Tetzlaff vom III. Physikalischen Institut befasst sich mit der Frage, wie man die Funktionsweise von Nervenzellen auf optische, lichtleiterbasierte Rechnerkomponenten übertragen kann. Die Universität Göttingen erhält für einen Zeitraum von drei Jahren eine Fördersumme von rund 750.000 Euro.

Lichtleitertechnologie wird derzeit zumeist für die schnelle Datenübertragung eingesetzt. Weniger bekannt ist, dass man mit Lichtleitern und anderen optischen Komponenten auch mit sehr hoher Geschwindigkeit rechnen kann. Ein weiterer Vorteil dieser Methoden ist der sehr geringe Energieverbrauch: Sie verbrauchen weniger als ein Hundertstel der Energie, welche konventionelle Rechnerarchitekturen benötigen. Um die verschiedenen Komponenten sinnvoll zusammen zu bringen, benutzt das ADOPD-Projekt Strukturen, die auf der Funktion von Nervenzellen basieren.

„Unsere Nervenzellen sind komplex aufgebaut“, sagt Wörgötter, „und viel Rechenarbeit findet schon am sogenannten Dendriten der Nervenzelle statt, bevor die Zelle ihre Signale weiter ins Nervennetzwerk sendet“. Der Dendrit ist die baumartige Struktur einer Nervenzelle, an der alle eintreffenden Signale aufgenommen und erstmals miteinander verrechnet werden. Diese Rechenoperationen ermöglichen es den Nervenzellen, effiziente Signalvorverarbeitung durchzuführen und damit komplexe Funktionen zu vereinfachen. „Dies ist zum Beispiel bei der Steuerung von Verhalten, aber auch bei kognitiven Prozessen, nötig“, erklärt Tetzlaff.

Für das Projekt kooperieren Neurowissenschaftler aus Göttingen und der Technischen Universität Graz mit Fachleuten aus Spanien (Universitat de les Illes Balears sowie der Agencia Estatal Consejo Superior de Investigaciones Cientificas, Mallorca).

Als Projektpartnerin aus den USA ist auch Frau Prof. Hui Cao von der Universität Yale dabei, die das Projekt durch ihre Expertise in komplexen Lichtleitertechnologien weiter verstärkt. Geplant ist, die dendritischen „Rechentricks“ auf optische Rechnerarchitekturen zu übertragen und zusammen mit der Firma Leoni Fibre Optics GmbH (Berlin) technisch nutzbar zu machen. Das Gesamtbudget des Projekts beträgt rund 2,8 Millionen Euro.

Wissenschaftliche Ansprechpartner:

Prof. Dr. Florentin Wörgötter
Georg-August-Universität Göttingen
III. Physikalisches Institut
Biophysik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon: 0551-39 26922
E-Mail: florentin.woergoetter@phys.uni-goettingen.de

http://www.uni-goettingen.de/

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ozon und Jetstream: Eine komplexe Beziehung

Aufwendigere Modelle haben bei der Darstellung atmosphärischer Veränderungen die Nase vorn. Ozon in der Stratosphäre schützt nicht nur das Leben auf der Erde vor gefährlicher UV-Strahlung. Es kann auch die…

Biobasierte Autokarosserie für die Straßenzulassung rückt in greifbare Nähe

Biowerkstoffe sind ein wichtiger Baustein bei der Umsetzung der Nationalen Bioökonomiestrategie Das Bundesministerium für Ernährung und Landwirtschaft (BMEL) fördert seit Oktober die Entwicklung einer Auto-Karosserie mit einem hohen Anteil nachwachsender…

Mikroschwimmer bewegen sich wie die Motten zum Licht

Die Freigeist-Nachwuchswissenschaftlergruppe der TU Dresden unter Leitung von Chemikerin Dr. Juliane Simmchen hat erstmals ein beeindruckendes Verhalten von synthetischen Mikroschwimmern untersucht: sobald die photokatalytischen Partikel eine beleuchtete Zone verlassen, drehen…