Verknotete molekulare Magnete

Die Abbildung zeigt als Illustration das Skyrmionengitter und die Ferromagnete unter den organischen Molekülen kombiniert mit den realen Messdaten. J. Brede, Arbeitsgruppe Prof. R. Wiesendanger, Universität Hamburg

Auf der Suche nach neuen Konzepten für zukünftige Informationstechnologien ist es Wissenschaftlern der Universität Hamburg und des Forschungszentrums Jülich gelungen, molekulare Magnete über ein Gitter aus magnetischen Skyrmionen zu koppeln und digitale Informationen zu übertragen.

Wie die Fachzeitschrift „Nature Nanotechnology“ berichtet, funktioniert der Informationstransport auch über längere Strecken. Dabei wird lediglich der Spin benutzt, wodurch die Daten-Übertragung im Gegensatz zu herkömmlichen elektronischen Bauteilen kaum Energie verbraucht und mit sehr hoher Geschwindigkeit abläuft.

Getrieben von der rasanten Entwicklung der Informationstechnologie gerade im mobilen Bereich stößt die herkömmliche Halbleiter-Technologie bald an ihre Grenzen. Daher wird schon lange nach neuen effi-zienten Konzepten für den Informationstransport und die Informationsverarbeitung auf kleinstmöglicher Skala gesucht. Einen viel versprechenden Ansatz bietet die Nano-Spintronik, da hier nicht die Ladung der Elektronen genutzt wird, sondern nur deren „Spin“.

Dieser Elektronen-Spin ist eine quantenmechanische Eigenschaft und kann vereinfacht als Drehung der Elektronen um ihre eigene Achse verstanden werden. Bereits 2011 hatten Hamburger Physiker ein Spintronik-Logik-Element vorgestellt, das aus ein paar einzel-nen Atomen aufgebaut ist, aber nur bei Temperaturen um den absoluten Nullpunkt (-273°C) funktioniert.

Also wurde nach „robusteren“ magnetischen Strukturen gesucht, die auch bei höheren Temperaturen stabil sind. Dazu boten sich die 2011 in Hamburg entdeckten magnetischen Skyrmionen auf einer Oberfläche an, die man sich als magnetische zweidimensionale Knoten vorstellen kann, bei denen sich die magnetischen Momente mit einem festen Drehsinn innerhalb einer Ebene um 360° drehen.

Doch wie lässt sich dieses Skyrmionengitter für den Datentransport und die Informationsverarbeitung nutzen?

Die Wissenschaftler wiederholten zunächst das Experiment von 2011 und erzeugten einen atomar dünnen Eisenfilm auf einer Iridium-Oberfläche. Das entstandene Skyrmionengitter ließ sich jedoch aufgrund seiner hohen Stabilität von außen nicht beeinflussen, noch konnte man Informationen weiterleiten. Um dieses Problem zu lösen, wurden kostengünstige und leicht zu präparierende organische Moleküle auf das Skyrmionengitter aufgebracht.

Die Moleküle verbanden sich mit den darunterliegenden Eisenatomen der Oberfläche zu molekularen Magneten, die sich ähnlich wie klassische Stabmagnete oder Kompassnadeln verhalten und sich z.B. mit Hilfe eines externen magnetischen Feldes ausrichten lassen. Wie es die Abbil-dung zeigt, konnten je nachdem, welche organischen Moleküle verwendet wurden, unterschiedlich große, maßgeschneiderte Ferromagnete erzeugt werden, die in etwa 10 – 100 Eisenatome beinhalten.

Obwohl die überraschend einfache und effiziente Methode des Maßschneiderns von Magneten auf Ober-flächen bereits Potential für Anwendungen in Speichermedien besitzt, ist die bemerkenswerteste und für die Physiker interessanteste Beobachtung, dass sich die molekularen Magnete durch das Skyrmionengit-ter miteinander „verknoten“ lassen: dreht man die magnetische Ausrichtung eines molekularen Magneten mit Hilfe eines externen magnetischen Feldes um, so dreht sich ebenfalls die magnetische Ausrichtung eines weiteren, weit entfernten molekularen Magneten.

Mit dieser Methode lassen sich Informationen auch über längere Strecken sicher, schnell und energieeffi-zient übertragen, da der eigentliche Transport ohne elektrischen Strom abläuft. Auch sind mit diesem System logische Schaltkreise vorstellbar, die extrem energieeffizient, sehr schnell und unvorstellbar klein sein könnten.

Außerdem hätte die Verwendung des Spins als Übermittler der Information einen weiteren Vorteil: es bleiben alle Informationen auch nach dem Ausschalten eines Bauteils erhalten, da diese mag-netisch und nicht elektronisch gespeichert sind. Dies würde beim Starten eines Gerätes den langwierigen Bootvorgang überflüssig machen, das System würde einfach weiter machen, als wäre es nie ausgeschaltet worden.

Weitere Informationen:
Prof. Dr. Roland Wiesendanger
Sonderforschungsbereich 668
Universität Hamburg
Jungiusstr. 11a, 20355 Hamburg

Tel.: (0 40) 4 28 38 – 52 44
Fax: (0 40) 4 28 38 – 24 09

E-Mail: wiesendanger@physnet.uni-hamburg.de

http://www.sfb668.de
http://www.nanoscience.de

Media Contact

Heiko Fuchs idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Merkmale des Untergrunds unter dem Thwaites-Gletscher enthüllt

Ein Forschungsteam hat felsige Berge und glattes Terrain unter dem Thwaites-Gletscher in der Westantarktis entdeckt – dem breiteste Gletscher der Erde, der halb so groß wie Deutschland und über 1000…

Wasserabweisende Fasern ohne PFAS

Endlich umweltfreundlich… Regenjacken, Badehosen oder Polsterstoffe: Textilien mit wasserabweisenden Eigenschaften benötigen eine chemische Imprägnierung. Fluor-haltige PFAS-Chemikalien sind zwar wirkungsvoll, schaden aber der Gesundheit und reichern sich in der Umwelt an….

Das massereichste stellare schwarze Loch unserer Galaxie entdeckt

Astronominnen und Astronomen haben das massereichste stellare schwarze Loch identifiziert, das bisher in der Milchstraßengalaxie entdeckt wurde. Entdeckt wurde das schwarze Loch in den Daten der Gaia-Mission der Europäischen Weltraumorganisation,…

Partner & Förderer