Ultrakaltes Modell für Quarkmaterie

Nur zu dritt sind die Borromäischen Ringe untrennbar. Fehlt einer, fallen auch die beiden übrigen auseinander. Max-Planck-Forscher haben in ultrakalten Gasen nun Verbindungen aus drei Teilchen geschaffen, die sich ganz ähnlich verhalten.

Von einem Extrem könnten Physiker etwas über ein anderes lernen. Mit extrem kalten Atomen machen Forscher des Max-Plack-Instituts für Kernphysik Experimente, die auch etwas über die extrem heiße Zeit kurz nach dem Urknall verraten könnten.

Sie haben ein sehr kaltes und dünnes Gas aus Lithiumatomen so präpariert, dass diese sich nach drei Sorten unterscheiden lassen. Teilchen der drei Sorten bilden Zustände, die nach dem Wappen einer italienischen Familie borromäisch heißen. Auf ähnliche Weise entstanden Protonen und Neutronen unmittelbar nach dem Urknall und bilden heute die Kernbausteine unserer Materie.

Das Modell der kalten Atome bietet nun neue Möglichkeiten, derartige Zustände zu erforschen – nicht zuletzt, weil in diesem System die Wechselwirkungen der Teilchen gezielt beeinflusst werden können. (Physical Review Letters, 101, 203202 (2008))

Polystyrol taucht in vielfältiger Form im Alltag auf. CD-Verpackungen, Joghurtbecher und Materialien zur Wärmedämmung sind nur einige der Dinge, die aus dem Kunststoff bestehen. Auch in der Nanowelt verwenden Forscher gerne Polystyrol, und zwar meist in Form winziger Kügelchen. Zum einen weil sie damit leicht grundlegende Phänomene untersuchen können, zum anderen, weil sich die Partikel auch für manche Anwendung eignen: So lassen sich damit Oberflächen für Datenspeicher oder Biosensoren strukturieren. Dafür aber müssen die Kügelchen geordnete Schichten bilden.

Wie Ulrich Jonas und seine Kollegen am Max-Planck-Institut für Polymerforschung nun untersucht haben, ist es gar nicht schwer, Kügelchen, die kleiner als ein Mikrometer sind, diese Ordnung beizubringen: Sie wachsen zunächst in einem Gemisch aus Styrol und Wasser, in dem die Styroltröpfchen ähnlich wie Öltropfen fein im Wasser verteilt sind. Ein Salz führt dazu, dass sich das Styrol verändert: Aus den Tröpfchen werden kleine Kugeln, die Polystyrolkugeln. Trocknen die Forscher sie, um sie anschließend wieder einzuweichen, gehen die Kügelchen nicht mehr unter, sondern schwimmen geordnet obenauf. Das verblüffende Verhalten der Polymere ist den Chemikern seit Längerem bekannt, die Ursache noch ungeklärt. Sie könnte darin liegen, dass die wasserliebenden Teile des Kunststoffs beim Trocknen in das Innere des Kügelchens wandern, die wasserabweisenden Teile nach außen.

Um dünne Kunststoffschichten herzustellen, nutzen die Wissenschaftler diesen wandelbaren Charakter der Polymere. Allerdings müssen sie die Kügelchen zum Trocknen großzügig auf einer Oberfläche verteilen. Denn nur wenn die Teilchen sich dabei nicht berühren, bilden sie später eine perfekt geordnete Schicht.

Sobald die Kügelchen das zweite Bad nehmen, rücken sie so dicht zusammen, dass jede Kugel von sechs Nachbarn umringt ist. Das ist platzsparend und sorgt für starke Haftung – so stark, dass die Forscher den dünnen Film leicht von der Wasseroberfläche auf eine feste Unterlage übertragen können. Dazu tauchen sie den Gegenstand, den sie beschichten wollen, unter die schwimmenden Kugeln und ziehen ihn mit diesen wieder aus dem Wasser. Auf diese Weise lässt sich der Kunststofffilm sogar auf gekrümmten Oberflächen platzieren.

So können die Wissenschaftler nicht nur einfach großflächige streng geordnete Schichten herstellen, sondern auch mehrere Schichten wie Holzbretter übereinanderstapeln. „Mit der Größe der Polymerpartikel lassen sich die Eigenschaften der Kugelmonoschichten steuern“, erklärt Jonas. Schichten aus kleineren Teilchen etwa eignen sich zum Entspiegeln von Oberflächen. Schichten aus größeren Teilchen zeigen den Lotus-Effekt: Wassertropfen perlen an ihnen ab und reinigen dabei die Oberfläche. Auch als Bedampfungsmaske setzen die Forscher eine Lage der Plastikkügelchen ein. Auf diese Weise können sie nanoskopische optoelektronische Bauelemente strukturieren.

Das Besondere der Schichten sind ihre winzigen Löcher, die entstehen, weil sich Kugeln aufgrund ihrer Form nicht lückenlos aneinanderfügen lassen, selbst wenn sie noch so eng zusammenrücken. „Dünne Filme aus Kunststoff lassen sich mit anderen Verfahren leicht herstellen“, sagt Jonas. „Eine solche Fläche dann aber gleichmäßig zu durchlöchern, ist schwierig.“ Das neue Verfahren der Max-Planck-Forscher liefert die Poren auf einfache Weise mit – quasi als Nebeneffekt der dichten Ordnung.

Neben Kügelchen aus Polystyrol haben die Wissenschaftler auch solche aus Plexiglas verwendet, um nach der neuen Methode dünne Kunststoffschichten zu produzieren. „Unser Verfahren eröffnet Wege, nanostrukturierte Materialien mit neuen Eigenschaften maßzuschneidern“, erläutert Jonas. Derzeit experimentiert sein Team an Schichten, die in einer Lage aus Bereichen verschiedener großer Kugeln bestehen sollen.

Originalveröffentlichung:

Timo B. Ottenstein, Thomas Lompe, Matthias Kohnen, André Wenz und Selim Jochim
Collisional Stability of a Three-Component Degenerate
Physical Review Letters, 101 203202 (2008)

Media Contact

Dr. Felicitas von Aretin Max-Planck-Gesellschaft

Weitere Informationen:

http://www.mpg.de/

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue Industrie-4.0-Lösung für niedrigschwelligen Zugang zu Datenräumen

»Energizing a Sustainable Industry« – das Motto der Hannover Messe 2024 zeigt klar, wie wichtig eine gleichermaßen leistungsstarke und nachhaltige Industrie für den Fertigungsstandort Deutschland ist. Auf der Weltleitmesse der…

Quantenpräzision: Eine neue Art von Widerstand

Physikforschende der Universität Würzburg haben eine Methode entwickelt, die die Leistung von Quantenwiderstands-Normalen verbessern kann. Sie basiert auf einem Quantenphänomen namens anomaler Quanten-Hall-Effekt. In der industriellen Produktion oder in der…

Sicherheitslücke in Browser-Schnittstelle erlaubt Rechnerzugriff über Grafikkarte

Forschende der TU Graz waren über die Browser-Schnittstelle WebGPU mit drei verschiedenen Seitenkanal-Angriffen auf Grafikkarten erfolgreich. Die Angriffe gingen schnell genug, um bei normalem Surfverhalten zu gelingen. Moderne Websites stellen…

Partner & Förderer