Struktureller Lichtschalter für Magnetismus in Antiferromagneten

Der Antiferromagnet CoF₂ verwandelt sich unter optischer Anregung in einen Ferrimagneten. Die roten / blauen Pfeile zeigen die ursprünglichen Spins. Terahertz-Lichtpulse bewirken Veränderungen der Kristallstruktur und so einen neuen magnetischen Zustand. Jörg Harms / MPSD

Magnetische Materialien spielen in der Computertechnik eine zentrale Rolle, da sie Informationen in ihrem magnetischen Zustand dauerhaft speichern. Jetzige Technologien nutzen Ferromagneten, deren Zustände sich durch Magnetfelder leicht umschalten lassen.

Eine andere Materialklasse, die der sogenannten Antiferromagneten, ermöglicht schnellere, dichtere und robustere Geräte der nächsten Generation. Allerdings sind ihre magnetischen Zustände notorisch schwer zu kontrollieren.

Die Stärke und Richtung des ‚Nordpols‘ eines Magneten wird durch seine sogenannte Magnetisierung gekennzeichnet. Bei Ferromagneten kann diese leicht umkehrbare Magnetisierung ein Informations-‚Bit‘ darstellen, weswegen sie ein verlässliches Material für magnetbasierte Technologien sind.

Ferromagnete haben jedoch eine relative langsame Betriebsgeschwindigkeit und reagieren zudem auf magnetische Streufelder. Diese Eigenschaften machen sie fehleranfällig und bedeuten, dass sie nicht dicht gepackt werden können.

Antiferromagnete sind daher eine spannende Alternative. Im Gegensatz zu Ferromagneten haben sie keine makroskopische Magnetisierung, da sie aus abwechselnd nach oben und unten weisenden ‚magnetischen Momenten‘ bestehen – wie Stabmagnete von atomarer Größe, die ihre Richtung von einem Atom zum nächsten umkehren.

Sie werden nicht stark von Magnetfeldern beeinflusst, was sie robust für die Informationsspeicherung macht und es ermöglicht, sie auf viel kleinere Größen zu skalieren. Darüber hinaus könnten sie mit Frequenzen bis zu mehreren Terahertz schneller reagieren als heutige Geräte.

Die Herausforderung für Forscher besteht nun darin, Methoden zu finden, um den magnetischen Zustand eines Antiferromagneten zuverlässig zu verändern.

Das MPSD- / Oxford-Team entschied sich für einen neuartigen Ansatz. Die Forscher untersuchten, wie die Kristallstruktur eines Antiferromagneten seinen magnetischen Zustand beeinflusst. Sie machten sich den sogenannten Piezomagnetismus zunutze: Die Eigenschaft einiger Antiferromagneten, bei der eine Änderung der Atomstruktur zur Magnetisierung führt – genau wie bei einem Ferromagneten.

Meist wird diese Veränderung durch die Anwendung eines einachsigen Drucks ausgelöst. Dies ist allerdings ein langsamer Prozess, der den Kristall zerbrechen kann.

Stattdessen verwendete das Team Lichtpulse, um den piezomagnetischen Effekt in CoF₂ zu steuern. Diese Methode, die 2011 von der Gruppe am Center for Free-Electron Laser Science in Hamburg entwickelt wurde, basiert auf der Anregung von Gitterschwingungen, den sogenannten ‚Phononen‘, mit sorgfältig zugeschnittenen Lichtpulsen.

Durch die genaue Abstimmung der Frequenz und Polarisation der Lichtpulse werden dieselben strukturellen Verzerrungen ausgelöst, die zum Piezomagnetismus führen, ohne jedoch den Kristall mechanisch belasten zu müssen. Dies ist eine experimentelle Idee, die Co-Autor Paolo Radaelli von der Universität Oxford während seines Besuchs am MPSD im Jahr 2018 vorschlug.

Mit dieser innovativen Technik gelang es den Forschern, eine 400 Mal größere Magnetisierung zu erzeugen, als bislang möglich war. Bemerkenswerterweise dauerte es nur etwa 100 Pikosekunden, bis sich die Magnetisierung entwickelte und die Richtung der Magnetisierung durch die geänderte Polarisation des Lichts umgekehrt werden konnte. Diese Ergebnisse stellen einen großen Fortschritt in der optischen Kontrolle der Materialeigenschaften dar.

Hauptautor Ankit Disa sagt: „Dieses Experiment war die erste Demonstration der 'rationalen' oder 'absichtlichen' Modifikation einer Kristallstruktur durch die Anwendung von Licht. Wir wussten, welche Art von struktureller Verzerrung erforderlich war, um einen Phasenübergang von einem Antiferromagneten zu einem Ferromagnet-ähnlichen Zustand zu schaffen. Der Trick bestand darin, zu verstehen, wie man mit Licht das Material in diese neue Kristallstruktur treiben kann“.

Andrea Cavalleri, der das experimentelle Team am MPSD leitete und im Exzellenzcluster CUI : Advanced Imaging of Matter forscht, sieht enormes Potenzial in der Verwendung von Licht zur Steuerung solcher Materialeigenschaften: „Diese Technik könnte zu optomagnetischen Schaltern führen, um zum Beispiel Speicher herzustellen, die mit Licht geschrieben und gelesen werden können.

Noch grundlegender ist, dass wir jetzt über die Werkzeuge und das Verständnis verfügen, um die Struktur von Materialien auf atomarer Ebene optisch zu konstruieren. Dadurch können wir die Funktionalitäten verschiedenster Systeme manipulieren – von Magneten und Ferroelektrika bis hin zu Supraleitern.“

Ankit Disa, Erstautor: ankit.disa@mpsd.mpg.de
Jenny Witt, MPSD PR und Kommunikation: jenny.witt@mpsd.mpg.de

https://www.nature.com/articles/s41567-020-0936-3

https://www.mpsd.mpg.de/443294/2020-05-disa-antiferromagnets

Media Contact

Jenny Witt Max-Planck-Institut für Struktur und Dynamik der Materie

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ozon und Jetstream: Eine komplexe Beziehung

Aufwendigere Modelle haben bei der Darstellung atmosphärischer Veränderungen die Nase vorn. Ozon in der Stratosphäre schützt nicht nur das Leben auf der Erde vor gefährlicher UV-Strahlung. Es kann auch die…

Biobasierte Autokarosserie für die Straßenzulassung rückt in greifbare Nähe

Biowerkstoffe sind ein wichtiger Baustein bei der Umsetzung der Nationalen Bioökonomiestrategie Das Bundesministerium für Ernährung und Landwirtschaft (BMEL) fördert seit Oktober die Entwicklung einer Auto-Karosserie mit einem hohen Anteil nachwachsender…

Mikroschwimmer bewegen sich wie die Motten zum Licht

Die Freigeist-Nachwuchswissenschaftlergruppe der TU Dresden unter Leitung von Chemikerin Dr. Juliane Simmchen hat erstmals ein beeindruckendes Verhalten von synthetischen Mikroschwimmern untersucht: sobald die photokatalytischen Partikel eine beleuchtete Zone verlassen, drehen…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close