Stabil dank Dynamik: DNA-Bestandteil widersteht UV-Bestrahlung

Die vor allem am DNA-Bestandteil 9H-Adenin gewonnenen Erkenntnisse wurden im „Journal of the American Chemical Society“ (JACS) publiziert und in Anerkennung der Qualität der Arbeit in die neu eingerichtete Online-Sektion „JACS Select“ aufgenommen. Die Ergebnisse des vom Wissenschaftsfonds FWF unterstützten Projektes belegen einen ultraschnellen, zweistufigen Prozess als einen Grund für die Fotostabilität der DNA.

UV-Strahlen bräunen nicht nur die Haut, sie können auch Atome ihrer Elektronen „berauben“ und so organische Verbindungen zerstören. Um diesen schädlichen Wirkungen zu entgehen, setzt der DNA-Bestandteil Adenin auf einen ultraschnellen Prozess, der in weniger als einer billionstel Sekunde abläuft. Durch UV-Licht kommt es zu einer Anregung von Elektronen des Adenins. Somit erlangen diese zunächst ein höheres Energieniveau. Von diesem kehren sie, im Fall des Adenins blitzschnell, wieder auf das ursprüngliche Grundniveau zurück. So wird potenziell schädliche Anregungsenergie in harmlose Vibrationsenergie des Molekülgerüstes umgewandelt. Die DNA wird dadurch vor Schäden geschützt. Während der Vorgang selbst bereits bekannt war, konnten die Details aufgrund der hohen Komplexität des Vorganges noch nicht simuliert und damit im Detail analysiert werden – bis jetzt.

Simulation eines Übergangs
Durch den innovativen Einsatz einer Berechnungsmethode zur Simulation dynamischer Quantenzustände gelang es dem Wiener Team um Prof. Hans Lischka und Doz. Mario Barbatti vom Institut für Theoretische Chemie der Universität Wien, genaue Aussagen über Mechanismen zu treffen, die der Fotostabilität von Adenin zugrunde liegen. „Durch die Größe des Moleküls, die notwendigen, langen Simulationszeiten und die Komplexität der Elektronen-Spektren war dieses Projekt eine formidable Herausforderung. Und es hat sich gelohnt, sie anzunehmen“, erklärt Lischka.

Das Team um Lischka berechnete, wie der Übergang zwischen den einzelnen Energieniveaus der Elektronen in Kopplung an die Bewegung der Atomkerne im Detail abläuft. Zunächst zeigen die Daten, dass dieser Übergang kein kontinuierlicher, sondern ein aus zwei Schritten bestehender Prozess ist. Ersterer ist „ultrakurz“ und nimmt lediglich 22 Femto-Sekunden (22 billiardstel Sekunden) in Anspruch. Dabei fallen die Elektronen von einem höheren Energieniveau (S3) in ein niedrigeres (S1). Der zweite Schritt dauert etwa 20-mal so lange wie der erste, nämlich eine halbe billionstel Sekunde. Danach sind die Elektronen des Adenins wieder in den energiearmen Ausgangszustand (S0) zurückgefallen, und das in unvorstellbarer Geschwindigkeit.

Bewegung der Elektronen und Atomkerne
Die renommierte American Chemical Society hebt in ihrem Kommentar unter anderem die Anzahl der von Lischka und seinem Team berechneten Kernbewegungsbahnen hervor. In dieser Arbeit wurden nicht nur ein oder zwei, sondern gleich 60 dieser, auch als Traktorien bezeichneten, Bahnen simuliert. Diese Anzahl ermöglichte die Erstellung einer Statistik über jene Vorgänge, die für die Fotostabilität von Adenin verantwortlich sind. Lischka und Barbatti dazu: „Durch Verwendung vieler Traktorien konnten wir statistische Aussagen treffen. So sahen wir beispielsweise, dass bei 98 %, also bei praktisch allen berechneten Traktorien, 60 Femto-Sekunden nach einer UV-Bestrahlung das S1- Niveau erreicht wurde.“ Die von Lischka und Barbatti in diesem speziellen Zusammenhang erstmals angewandte Computersimulationsmethode birgt großes Potenzial für die weitere Erforschung ultraschneller fotochemischer Prozesse in polyatomaren Molekülen. Dieses Potenzial der äußerst zeitintensiven Methode konnte durch die Förderung von Lischkas Arbeit durch den Wissenschaftsfonds FWF voll ausgeschöpft werden. Die erlangten Einsichten und die Aufnahme der Publikation von Lischka und Barbatti in die Website-Rubrik „JACS Select“ für innovative Entwicklungen zeigen deutlich, dass Lischka seine „formidable Herausforderung“ bestens bewältigt hat.
Originalpublikation: „Nonadiabatic Deactivationof 9H-Adenine: A Comprehensive Picture Based on Mixed Quantum-Classical Dynamics“ M. Barbatti & H. Lischka. J. Am. Chem. So., 2008, 130 (21), 6831-6839, DOI:10.1021/ja800589p

JACS Select: http://pubs.acs.org/JACSbeta/jvi/issue3.html

Wissenschaftlicher Kontakt
Prof. Hans Lischka
Universität Wien
Institut für Theoretische Chemie
Währinger Strasse 17
1090 Vienna
Austria
T +43 / 1 / 4277 527 57
E hans.lischka@univie.ac.at
Der Wissenschaftsfonds FWF
Mag. Stefan Bernhardt
Haus der Forschung
Sensengasse 1
1090 Wien
T +43 / 1 / 505 67 40 – 8111
E stefan.bernhardt@fwf.ac.at
Redaktion & Aussendung
PR&D – Public Relations für Forschung & Bildung
Campus Vienna Biocenter 2
1030 Wien
T +43 / 1 / 505 70 44
E contact@prd.at
W http://www.prd.at

Media Contact

PR&D

Weitere Informationen:

http://www.fwf.ac.at

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Neue universelle lichtbasierte Technik zur Kontrolle der Talpolarisation

Ein internationales Forscherteam berichtet in Nature über eine neue Methode, mit der zum ersten Mal die Talpolarisation in zentrosymmetrischen Bulk-Materialien auf eine nicht materialspezifische Weise erreicht wird. Diese „universelle Technik“…

Tumorzellen hebeln das Immunsystem früh aus

Neu entdeckter Mechanismus könnte Krebs-Immuntherapien deutlich verbessern. Tumore verhindern aktiv, dass sich Immunantworten durch sogenannte zytotoxische T-Zellen bilden, die den Krebs bekämpfen könnten. Wie das genau geschieht, beschreiben jetzt erstmals…

Immunzellen in den Startlöchern: „Allzeit bereit“ ist harte Arbeit

Wenn Krankheitserreger in den Körper eindringen, muss das Immunsystem sofort reagieren und eine Infektion verhindern oder eindämmen. Doch wie halten sich unsere Abwehrzellen bereit, wenn kein Angreifer in Sicht ist?…

Partner & Förderer