Quantenzustände im atomaren Baukasten gesteuert

Die Anwendung der Quantenmechanik gestaltet sich deshalb schwierig, weil jede Messung den gemessenen Zustand verändert. Technologien wie beispielsweise Quantencomputer können entsprechend nur auf der Basis von bekannten, eindeutig definierten und wenig komplexen Interaktionen zwischen einzelnen Teilchen entworfen werden.

Am Departement Physik und dem Swiss Nanoscience Institute der Universität Basel wurde nun ein Verfahren entwickelt, mit denen man solche Wechselwirkungen an einem gut definierten System studieren kann.

Ähnlich einem Steckbrett in der Elektrotechnik

In der elektronischen Messtechnik und Lehre werden sogenannte Steckbretter verwendet, an denen Prototypen von elektronischen Schaltungen konstruiert und getestet werden können. Das Verfahren des internationalen Konsortiums um Prof. Thomas Jung von der Universität Basel funktioniert ähnlich: Mit der neuen Methode können die Forscher ein Netzwerk von sogenannten Quantentöpfen zum ersten Mal so konfigurieren, dass verschiedene elektronische Quantenzustände entstehen.

Ein Quantentopf ist eine künstlich hergestellte Struktur, die die Bewegungsfreiheit eines Teilchens so einschränkt, dass es sich nur in zwei Dimensionen bewegen kann. Damit wird die Komplexität der Teilcheninteraktion verringert und die Messung und deren Auswertung vereinfacht.

Das Forschungsteam hat eine etablierte Methode weiterentwickelt, bei der mithilfe von einem Rastertunnelmikroskop Atome, eines nach dem anderen, versetzt werden, wodurch eindeutig definierte Quantensysteme hergestellt werden. Durch das gezielte Umsetzen von Xenon-Atomen in den Quantentöpfen ist es ihnen somit gelungen, verschiedene Besetzungen zu erzeugen, welche unterschiedlichen Quantenzuständen entsprechen.

Grundlegend für Quantentechnologie

Die Entwicklung der Quantentechnologie ist auf ein detailliertes Verständnis der Wechselbeziehungen verschiedener Elektronenzuständen, zum Beispiel in verschiedenen Atomen angewiesen. Mit der von den Physikern entwickelten Methode können Quantenzustände präzise reproduziert und Interaktionen zwischen verschiedenen chemischen Elementen und gut definierten Elektronenzuständen untersucht werden – eine «unbegrenzte Spielwiese für die Erforschung von Quantenzuständen», wie die Forscher im Journal «Small» schreiben.

Das Projekt war dank Beiträgen verschiedener Institutionen erfolgreich. Forscher aus Linköping (Schweden) entwarfen die Modelle, die verwendeten Moleküle wurden in Heidelberg (Deutschland) synthetisiert und Wissenschaftler aus San Sebastián (Spanien) führten eine komplizierte spezifische Messung durch.

Originalbeitrag

Sylwia Nowakowska, Aneliia Wäckerlin, Ignacio Piquero-Zulaica, Jan Nowakowski, Shigeki Kawai, Christian Wäckerlin, Manfred Matena, Thomas Nijs, Shadi Fatayer, Olha Popova, Aisha Ahsan, S. Fatameh Mousavi, Toni Ivas, Ernst Meyer, Meike Stöhr, J. Enrique Ortega, Jonas Björk, Lutz H. Gade, Jorge Lobo-Checa, and Thomas A. Jung
Configuring Electronic States in an Atomically Precise Array of Quantum Boxes
Small 2016,00, 1–6 | doi: 10.1002/smll.201600915

Weitere Auskünfte

Prof. Dr. Thomas A. Jung, Universität Basel, Nanolab, Tel.: +41 56 310 45 18, E-Mail: thomas.jung@psi.ch.

https://www.unibas.ch/en/News-Events/News/Uni-Research/Controlling-Quantum-State…

Media Contact

Olivia Poisson Universität Basel

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Die ungewisse Zukunft der Ozeane

Studie analysiert die Reaktion von Planktongemeinschaften auf erhöhtes Kohlendioxid Marine Nahrungsnetze und biogeochemische Kreisläufe reagieren sehr empfindlich auf die Zunahme von Kohlendioxid (CO2) – jedoch sind die Auswirkungen weitaus komplexer…

Neues Standardwerkzeug für die Mikrobiologie

Land Thüringen fördert neues System zur Raman-Spektroskopie an der Universität Jena Zu erfahren, was passiert, wenn Mikroorganismen untereinander oder mit höher entwickelten Lebewesen interagieren, kann für Menschen sehr wertvoll sein….

Hoher Schutzstatus zweier neu entdeckter Salamanderarten in Ecuador wünschenswert

Zwei neue Salamanderarten gehören seit Anfang Oktober 2020 zur Fauna Ecuadors welche aufgrund der dort fortschreitenden Lebensraumzerstörung bereits bedroht sind. Der Fund ist einem internationalen Team aus Wissenschaftlerinnen und Wissenschaftlern…

By continuing to use the site, you agree to the use of cookies. more information

The cookie settings on this website are set to "allow cookies" to give you the best browsing experience possible. If you continue to use this website without changing your cookie settings or you click "Accept" below then you are consenting to this.

Close