Physiker starten Forscherverbund zur Turbulenz

Wissenschaftler der Universitäten Cottbus, Marburg, Ilmenau, Erlangen-Nürnberg sowie das Max-Planck-Institut für Dynamik und Selbstorganisation in Göttingen arbeiten gemeinsam in einer neuen Forschergruppe, die sich mit turbulenten Strömungen beschäftigt.

Hinter dem für Laien sperrigen Forschungsthema „Wandnahe Transport- und Strukturbildungsprozesse in turbulenten Rayleigh-Bénard-, Taylor-Couette- und Rohrströmungen“ verbirgt sich das Erkenntnisinteresse an Strömungen, wie sie zum Beispiel in Flugzeugkabinen, in großen Konzerthallen, aber auch in der Atmosphäre auftreten. Die bisher bekannten Theorien und Modelle zu diesen Strömungen sind noch unzureichend, denn sie weichen umso mehr von den gemessenen Werten ab, je stärker die Strömung turbulent wird. Hier setzt die Forschergruppe an, die sowohl eine Überprüfung der Theorien als auch die bessere Erforschung der Strömungsturbulenzen in Experimenten anstrebt. Seit Anfang des Jahres fördert die Deutsche Forschungsgemeinschaft (DFG) das Verbundvorhaben mit 1,9 Millionen Euro.

„Die Beschreibung turbulenter Strömungen ist nach wie vor eine der größten Herausforderungen in den Ingenieurwissenschaften und der klassischen Physik“, heißt es hierzu auf der Homepage der Forschergruppe an der Brandenburgischen Technischen Universität Cottbus, bei der die Federführung liegt. Einen besonderen Erkenntnisfortschritt ist den Verantwortlichen zufolge von der vergleichenden Untersuchung dreier fundamentaler Strömungen zu erwarten, die bisher meist getrennt betrachtet wurden: Dabei handelt es sich um thermische Konvektion in einer von unten geheizten Zelle (Rayleigh-Bénard-Strömung), Scherturbulenz zwischen zwei konzentrischen, sich drehenden Zylindern (Taylor-Couette-Strömung) sowie druckgetriebene Turbulenz in einer Rohrströmung. Wie die Verantwortlichen schreiben, solle die Forschergruppe neue Perspektiven eröffnen, um „die turbulente Dynamik in Wandnähe zu kontrollieren sowie komplexe turbulente Strömungen zuverlässiger in stark reduzierten Modellen zu beschreiben“.

Weitere Informationen
FOR 1182 im Internet: www.tu-cottbus.de/fakultaet3/de/aerodynamik-stroemungslehre/forschung/for1182/kontakt.html
Sprecher
Professor Dr.-Ing. Christoph Egbers, Brandenburgische Technische Universität Cottbus (BTU), Lehrstuhl Aerodynamik und Stömungslehre, Tel.: 0355 69-4485, E-Mail: egbers@tu-cottbus.de
Stellvertretende Sprecher
Professor Dr. Bruno Eckhardt, Philipps Universität Marburg, AG Komplexe Systeme, Tel.: 06421 28-21316, E-Mail: BRUNO.ECKHARDT@PHYSIK.UNI-MARBURG.DE

Professor Dr. Jörg Schumacher, Technische Universität Ilmenau, Fachgebiet Theoretische Strömungsmechanik, Tel.: 03677 69-2428, E-Mail: joerg.schumacher@tu-ilmenau.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Ein hochpräziser digitaler Zwilling der Erde

Ein di­gi­ta­ler Zwil­ling der Er­de soll künf­tig das Erd­sys­tem si­mu­lie­ren. Er könn­te die Po­li­tik da­bei un­ter­stüt­zen, ge­eig­ne­te Mass­nah­men zum Schutz vor Ex­tre­m­er­eig­nis­sen zu tref­fen. Ein Stra­te­gie­pa­pier von eu­ro­päi­schen For­schen­den und…

Experiment zeigt neue Optionen für Synchrotronlicht-Quellen auf

Beschleunigerphysik Ein internationales Team hat mit einem aufsehenerregenden Experiment gezeigt, wie vielfältig die Möglichkeiten von Synchrotronlicht-Quellen sind. Beschleunigerexperten des Helmholtz-Zentrums Berlin (HZB), der Physikalisch-Technischen Bundesanstalt (PTB) und der Tsinghua Universität…

Präzise Messwerte ermöglichen leichtere Bauteile

Für einen Kraftmesssensor, der bei Materialprüfungen unter Wasserstoffatmosphäre deutlich präzisere Festigkeitskennwerte liefert als bisherige Messmethoden, hat ein Forscherteam der Materialprüfungsanstalt (MPA) der Universität Stuttgart den „ThinKing“, ein Label der Landesagentur…

Partner & Förderer