Physiker koppeln weit entfernte Kernspins mit einem einzelnen Elektron

Illustration eines Halbleiter-Quantenpunkts aus Indiumarsenid/Galliumarsenid (Indium, Gallium, Arsen in gelb, blau und lila). Zwei entferne Kernspins (gelbe Pfeile) sind durch den Spin eines Elektrons miteinander gekoppelt, das um die Atome im roten Bereich kreist. (Bild: Universität Basel, Departement Physik)

Bei den meisten Materialien beeinflussen sich die Kernspins von benachbarten Atomen nur sehr schwach, da die winzigen Kerne tief im Innern der Atome liegen. Anders sieht es bei Metallen aus, die frei bewegliche Elektronen aufweisen. Die Elektronenspins sind in der Lage, weit auseinanderliegende Kernspins miteinander zu koppeln. Diese nach vier Physikern benannte RKKY-Wechselwirkung wurde bereits in den 50er Jahren entdeckt.

Einzelner Elektronenspin verbindet Kernspins

Forscher am Departement für Physik der Universität Basel ist es nun zum ersten Mal gelungen, diesen Mechanismus im Experiment an einem einzigen Elektron zu demonstrieren und mit einer Quanten-Theorie zu beschreiben. Dazu hat das Team um Prof. Richard Warburton ein einzelnes Elektron in einen Quantenpunkt eingeschleust.

Mithilfe einer in Basel entwickelten Methode zur Messung der Kernspinresonanz konnten sie zeigen, dass das Elektron Kernspins koppelte, die bis zu fünf Nanometer auseinanderlagen – eine riesige Distanz in der Welt der Kernspins. Relevant sind die Ergebnisse insbesondere für die Entwicklung von Spin-Qubits, die Elektronenspins als Informationsträger nutzen möchten, beschränkt doch die Wechselwirkung die Stabilität der Quanteninformation.

«Das ist wohl das komplizierteste Experiment, das unser Team je durchgeführt hat», sagt Prof. Richard Warburton, Leiter der Forschungsgruppe Nano-Photonics am Basler Departement für Physik. Zugleich zeigt er sich begeistert von der Kooperation unter drei Basler Forschungsgruppen, die dieses Experiment ermöglicht hat. «Es waren so viele verschiedene Aspekte zu beachten – eine Herausforderung, die wir nur dank der grossartigen Zusammenarbeit an unserem Departement meistern konnten.»

Die Forschungsgruppe von Prof. Martino Poggio stellte ihre Expertise im Bereich Kernspinresonanz zur Verfügung, während das Team um Prof. Daniel Loss in monatelanger Arbeit die Quanten-Theorie zum Experiment berechnete. Ebenfalls beteiligt war die Ruhr-Universität Bochum, welche die Halbleiter-Chips für das Experiment herstellte.

Das Projekt wurde gefördert vom Nationalen Forschungsschwerpunkt Quantum Science and Technology (NCCR QSIT), vom Schweizerischen Nationalfonds und vom Swiss Nanoscience Institute.

Originalbeitrag

Gunter Wüst, Mathieu Munsch, Franziska Maier, Andreas V. Kuhlmann, Arne Ludwig, Andreas D. Wieck, Daniel Loss, Martino Poggio, and Richard J. Warburton
Role of the electron spin in the nuclear spin coherence in a quantum dot
Nature Nanotechnology (2016), doi: 10.1038/nnano.2016.114

Weitere Auskünfte

Prof. Dr. Richard J. Warburton, Universität Basel, Departement Physik, Tel. +41 61 267 35 60, E-Mail: richard.warburton@unibas.ch

Media Contact

Reto Caluori Universität Basel

Weitere Informationen:

http://www.unibas.ch

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer