Neues Standardwerkzeug für die Mikrobiologie

Mit einem Raman-Mikrospektroskop erfasst Doktorand Marcel Dahms vom Leibniz-Institut für Photonische Technologien die spezifischen Schwingungsspektren von auf einem Chip gefangenen Bakterien.
Foto: Sven Döring/IPHT

Land Thüringen fördert neues System zur Raman-Spektroskopie an der Universität Jena

Zu erfahren, was passiert, wenn Mikroorganismen untereinander oder mit höher entwickelten Lebewesen interagieren, kann für Menschen sehr wertvoll sein. Bakterien beispielsweise produzieren bei solchen Prozessen häufig Substanzen, die möglicherweise die Grundlage für neue Arzneiwirkstoffe oder Antibiotika liefern. Um solche Prozesse beobachten zu können, nutzen Forscherinnen und Forscher moderne Bildgebungsverfahren – wie die Raman-Spektroskopie.

Diese Untersuchungsmethode erforschen die Wissenschaftlerinnen und Wissenschaftler seit Jahren an der Friedrich-Schiller-Universität Jena, entwickeln sie weiter für verschiedene Disziplinen und integrieren sie in kommerzielle Anwendungen. Im Rahmen des Projektes „Untersuchung mikrobieller Interaktionen mithilfe von Raman-Spektroskopie“ – kurz: „MICROVERSE-Raman“ – wollen sie nun Mikrobiologinnen und Mikrobiologen ein Raman-Mikroskop zur Verfügung stellen, durch das diese die Methode flexibel in ihre Arbeiten einbeziehen können, um eine breite Palette an möglichen biologischen Proben und Biomolekülen zu untersuchen. Das Land Thüringen unterstützt dieses Vorhaben mit 400.000 Euro.

Wesentlicher Baustein der Bildgebungsverfahren

Während der Raman-Spektroskopie bestrahlt man eine Probe mit Laserlicht. Das Licht wird an den Molekülen der Probe inelastisch gestreut, wodurch diese mit größerer Amplitude schwingen. Die entstehenden Schwingungsmuster werden als Raman-Spektren ausgelesen und liefern molekulare Informationen zur chemischen und biochemischen Zusammensetzung der Probe.

„Die Untersuchungsmethode eignet sich für die Mikrobiologie besonders gut, da keine große Probenvorbereitung notwendig ist und die Mikroben praktisch in vivo beobachtet werden können“, erklärt Prof. Dr. Jürgen Popp von der Universität Jena, der das Projekt leitet. „Setzen die Bakterien beispielsweise während der Interaktion mit einem Organismus, etwa einem Pilz, eine Substanz frei, so lässt sich genau überprüfen, welche Stämme – also von den Biologen charakterisierte Genotypen – für die Produktion verantwortlich sind und in welcher zeitlichen Abfolge das Ganze passiert“, ergänzt seine Kollegin Dr. Anja Silge.

Popp und sein Team haben bereits einige Projekte mit solchen Fragestellungen durch individuelle Lösungen unterstützt – vor allem im Rahmen des Exzellenzclusters „Balance of the Microverse“ sowie der Sonderforschungsbereiche ChemBioSyS und AquaDiva der Universität Jena, das sich der Erforschung mikrobieller Interaktionen widmet. „Mit dem neuen System wollen wir den Kolleginnen und Kollegen aus der Mikrobiologie nun diese leistungsstarke Technologie noch zugänglicher machen, ihre Nutzung noch stärker strukturieren, standardisieren und somit etablieren“, sagt der Jenaer Chemiker und wissenschaftliche Direktor des dortigen Leibniz-Instituts für Photonische Technologien. Sie werde ein wesentlicher Baustein im „Imaging Center“ des Exzellenzclusters sein, das verschiedene moderne Bildgebungsverfahren bereithält.

Weltweites Zentrum der Raman-Spektroskopie

Das neue Gerät wird beispielsweise eine Inkubationskammer besitzen, die optimale Voraussetzungen für die aus lebenden Zellen bestehenden Proben schafft, sowie mit flexibel einstellbaren Lichtquellen versehen sein, bei denen sich die Wellenlängen variieren lassen. Das ist notwendig, da sich so ganz unterschiedliche Ebenen in den Blick nehmen lassen. „Wenn man etwa eine Blutzelle untersucht, erhält man mit einer Wellenlänge sämtliche Informationen zu den vorhandenen Molekülen. Wechselt man dann auf blaues Licht, so kann man selektiv Moleküle mit spezifischen Eigenschaften beobachten“, erklärt Jürgen Popp.

Darüber hinaus beraten die Projektmitarbeiterinnen und -mitarbeiter bei der Anwendung der Raman-Spektroskopie, geben Hilfestellung beim Versuchsaufbau und bei der Auswertung gewonnener Daten. Die neue Forschungsinfrastruktur untermauert somit einmal mehr den Status Jenas als wichtiges Zentrum für diese Untersuchungsmethode. Denn sie hilft nicht nur Fragestellungen aus der Mikrobiologie zu beantworten, sondern liefert auch regelmäßig wertvolle Informationen für Projekte aus der Chemie, der Physik oder den Materialwissenschaften. „Wir sind vermutlich die weltweit größte Forschungseinheit, die so vielseitig Raman-Spektroskopie einsetzt“, fasst Jürgen Popp zusammen. „Aus dieser Position heraus arbeiten wir zudem intensiv daran, verstärkt medizinische Anwendungen für die Methode zu entwickeln, etwa für die Erkennung von Antibiotika-Resistenzen.“

Wissenschaftliche Ansprechpartner:

Prof. Dr. Jürgen Popp
Institut für Physikalische Chemie der Universität Jena
Helmholtzweg 4, 07743 Jena
Tel.: 03641 / 948320
E-Mail: juergen.popp@uni-jena.de

Weitere Informationen:

http://www.uni-jena.de

Media Contact

Sebastian Hollstein Abteilung Hochschulkommunikation/Bereich Presse und Information
Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Mehr Sicherheit für Talsperren und Dämme

TH Köln und Aggerverband entwickeln System zur Überwachung von Sperrbauwerken. Die unter Wasser liegenden Teile von Sperrmauern und Dämmen wurden bislang nicht kontinuierlich überwacht. Um solche Bauwerke, die zur kritischen…

Mit Satelliten-Daten Maßnahmen gegen Waldschäden planen

Forschungsteam der Universität Göttingen an Wiederbewaldung in Thüringen beteiligt. Stürme, heiße und trockene Sommer sowie Schädlingsbefall haben in den hiesigen Wäldern sichtbare Spuren hinterlassen. Dies gilt auch für Fichtenbestände in…

Asteroideneinschlag in Zeitlupe

Hochdruck-Studie löst 60 Jahre altes Rätsel. Zum ersten Mal haben Forscher live verfolgt, was bei einem Asteroideneinschlag in dem getroffenen Material genau vor sich geht. Das Team von Falko Langenhorst…

Partner & Förderer