Neue Erkenntnisse über metallische Schmelzen: Was Einstein nicht ahnte

Forschungsgegenstand Vitreloy 4: Kieler Wissenschaftlerinnen und Wissenschaftler haben neues Grundlagenwissen über metallische Schmelzen geschaffen. Foto/Copyright: Elisabeth Gill

„Das Metall der Zukunft“ – damit werben Firmen für die extrem harten, elastischen und korrosionsbeständigen Metalllegierungen. Sie sind besonders in der Medizin, in der Raumfahrt und bei Sportausrüstung wie Golfschlägern gefragt. Die Herstellung dieser metallischen Gläser, die erstmals 1954 in Deutschland entdeckt wurden, ist jedoch sehr aufwendig und teuer, da umfassende wissenschaftliche Grundlagenerkenntnisse bisher fehlen – trotz zurzeit intensiver Erforschung.

Insbesondere die Übergangsphase von der Schmelze bis zum Glas stellt die Forscherinnen und Forscher vor große Rätsel. In kristallinen Festkörpern ist jedes einzelne Atom wie in einem Käfig an seinem Ort gefangen, denn die Teilchen sind dicht und regelmäßig „gepackt“. Völlig anders verhalten sie sich hingegen in sogenannten einfachen Schmelzen.

Das sind Stoffe in der flüssigen Phase, die nur aus einem Element bestehen. In diesem Zustand haben die Atome mehr Platz (= mehr freies Volumen), um sich gleichzeitig zu bewegen. Dadurch stoßen sie auch aneinander und ändern fortwährend ihre Richtung. Albert Einstein beschrieb dieses Verhalten bereits 1905 in einer Gleichung: In einer einfachen Schmelze bestimmt demnach die Größe der Atome deren Geschwindigkeit. Bei etwa gleicher Atomgröße – so erkannte der Physiker – sollten sich alle Atome nahezu gleich schnell bewegen.

Überraschendes förderte jetzt ein Kieler Forschungsteam um Professor Franz Faupel und Professor Klaus Rätzke mit Kolleginnen und Kollegen vom Deutschen Zentrum für Luft- und Raumfahrt in Köln zu Tage: Mit Experimenten an Vitreloy 4 (Marke der Liquidmetal Technologies), einer Legierung aus Zirconium, Titan, Kupfer, Nickel und Beryllium – also einer komplexen Schmelze aus mehreren Elementen – wiesen sie nach, dass sich komplexe Schmelzen von glasbildenden Legierungen nicht wie einfache Schmelzen verhalten.

„Schon mehrere hundert Grad vor dem Einsetzen der Erstarrung stellten wir fest, dass sich unterschiedliche Atomspezies unterschiedlich schnell bewegten“, erklärt Faupel die Untersuchungsergebnisse, „Und dass, obwohl die verschiedenen Atome fast gleich groß sind.“ Die Forschenden hatten zuvor Zirkon- und Cobalt-Atome radioaktiv markiert und beobachteten, dass die Zirkon-Atome bis zu viermal langsamer durch die Schmelze schleichen als die restlichen Atome. „Sie bewegen sich nicht frei, sondern spüren sogar oberhalb der Glasübergangstemperatur das Energiepotential anderer Zirkon-Atome und formen zeitweilig sogar Bindungen mit ihren Nachbarn“, führt Faupel weiter aus.

Diese Erkenntnisse, jüngst erschienen in der renommierten Fachzeitschrift „Physical Review Letters“, bestätigen nicht nur jüngste Theorien in diesem Forschungsfeld, welche davon ausgehen, dass die Glasbildung durch das Einfrieren der Bewegung bei bestimmten Temperaturen bedingt ist. Sondern sie könnten auch dazu führen, dass metallische Gläser zukünftig günstiger und gezielter hergestellt werden können.

Originalpublikation
Decoupling of Component Diffusion in a Glass-Forming Zr46.75Ti8.25Cu7.5Ni10Be27.5 Melt Far above the Liquidus Temperature
Sri Wahyuni Basuki, Alexander Bartsch, Fan Yang, Klaus Rätzke, Andreas Meyer and Franz Faupel. PhysRevLett.113.165901 (DOI: 10.1103)
Link zum Online-Artikel: http://journals.aps.org/prl/abstract/10.1103/PhysRevLett.113.165901

Fotos und Abbildungen stehen zum Download zur Verfügung:
http://www.uni-kiel.de/download/pm/2014/2014-321-1.jpg
Bildunterschrift: Die Doktorandin Sri Wahyuni Basuki im Labor vor der Diffusionsapparatur für die hier vorgestellten Experimente.
Foto/Copyright: AG Materialverbunde Uni Kiel

http://www.uni-kiel.de/download/pm/2014/2014-321-2.jpg
Bildunterschrift: Diffusionsmechanismen im Festkörper, der komplexen Schmelze und der einfachen Schmelze
Copyright: AG Materialverbunde Uni Kiel

http://www.uni-kiel.de/download/pm/2014/2014-321-3.jpg
Bildunterschrift: Forschungsgegenstand Vitreloy 4: Kieler Wissenschaftlerinnen und Wissenschaftler haben neues Grundlagenwissen über metallische Schmelzen geschaffen.
Foto/Copyright: Elisabeth Gill

Kontakt
Prof. Dr. Franz Faupel
Universität Kiel
Institut für Materialwissenschaft
Tel.: 0431/880 6225
E-Mail: ff@tf.uni-kiel.de

Prof. Dr. Klaus Rätzke
Universität Kiel
Institut für Materialwissenschaft
Tel.: 0431/880 6227
E-Mail: kr@tf.uni-kiel.de

Media Contact

Dr. Boris Pawlowski Christian-Albrechts-Universität zu Kiel

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Graphen-Forschung: Zahlreiche Produkte, keine akuten Gefahren

«Graphene Flagship» nach zehn Jahren erfolgreich abgeschlossen. Die grösste je auf die Beine gestellte EU-Forschungsinitiative ist erfolgreich zu Ende gegangen: Ende letzten Jahres wurde das «Graphene Flagship» offiziell abgeschlossen. Daran…

Wie Bremsen im Gehirn gelockert werden können

Forschende lokalisieren gestörte Nervenbahnen mithilfe der tiefen Hirnstimulation. Funktionieren bestimmte Verbindungen im Gehirn nicht richtig, können Erkrankungen wie Parkinson, Dystonie, Zwangsstörung oder Tourette die Folge sein. Eine gezielte Stimulation von…

Wärmewende auf der GeoTHERM erleben

Als Innovationspartner in Sachen Wärmewende für Industrie und Kommunen stellt sich das Fraunhofer IEG auf der internationalen Fachmesse GeoTHERM vor. Auf seiner Ausstellungsfläche in Offenburg stellt es ab dem 29….

Partner & Förderer