Molekulare Gestaltwandler

Eine Gruppe von Bausteinen kann spontan zu einer neuen Struktur mit einer neuartigen Konfiguration umgeordnet werden.
(c) MPI-DS / LMP

Neue Theorie zur selbständigen Umgestaltung von Strukturen.

Aus einzelnen Bausteinen aufgebaute Strukturen können ihre Form verändern und sich selbständig zu einer neuen Konfiguration umgestalten. Die Physiker Saeed Osat und Ramin Golestanian vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPI-DS) entdeckten diesen Mechanismus, mit dem sich die molekulare Organisation aktiv beeinflussen lässt. Ein Keim der neuen gewünschten Konfiguration reicht aus, um eine Reorganisation auszulösen. Dieses Prinzip lässt sich auch auf biologische Bausteine übertragen, die in lebenden Systemen ständig recycelt werden, um neue Strukturen zu bilden.

Das Konzept des Umbaus ist den meisten Menschen vertraut: Wer schon einmal mit Legosteinen gespielt hat, weiß, dass viele verschiedene Strukturen aus denselben Steinen gebaut werden können. In der Regel beschreibt eine beiliegende Anleitung die Anordnung der einzelnen Steine und die endgültige Form. Auch wenn zu Beginn nur wenige Teile zusammengesetzt sind, wird so bereits festgelegt, wie alle anderen Teile angebracht werden müssen. „Unser Modell beschreibt die Neuanordnung von Bausteinen in physikalischen Systemen anhand einer gegebenen Struktur“, erklärt Saeed Osat, der Erstautor der Studie. „Wenn nur einige wenige Teile in dieser Struktur verändert werden, fungieren sie als Keimzelle, die zu einer völlig neuen Zusammensetzung führt.“

Wie in einer Lego-Anleitung gibt es bestimmte Regeln, wie die Steine angeordnet werden müssen. In dem Modell der Wissenschaftler werden die Anweisungen für den Zusammenbau aus einer Liste möglicher molekularer Wechselwirkungen abgeleitet. Diese hängen vom Energiezustand des Systems, von der Größe des Keims und von den nicht-reziproken Wechselwirkungen zwischen den Komponenten ab. „Unter bestimmten Bedingungen können wir dann vielfältige Umstrukturierungen zu neuen Formen beobachten“, erklärt Ramin Golestanian, Leiter der Abteilung Physik Lebender Materie und Direktor am MPI-DS. „Wir haben eine neue Lernregel identifiziert, die Strukturen dazu bringt, ihre Form dynamisch zu verändern, abhängig von den nicht-reziproken Wechselwirkungen zwischen ihren Teilen“, fasst er die Ergebnisse der Studie zusammen.

In der Biologie findet eine ständige Umordnung von Bausteinen statt. Anstatt komplexe Strukturen als Ganzes zu entsorgen, werden sie in ihre Einzelteile zerlegt, die zum Aufbau neuer Zusammensetzungen verwendet werden. Das Modell kann daher helfen, die Prinzipien der Selbstorganisation in der lebenden Materie zu verstehen. Ebenso kann dieses Prinzip der synthetischen und autonomen Selbstorganisation außerhalb des Gleichgewichts dazu dienen, Strategien für die Konstruktion von molekularen Robotern zu entwickeln.

Wissenschaftliche Ansprechpartner:

Prof. Ramin Golestanian
Geschäftsführender Direktor
Am Faßberg 17
D-37077 Göttingen
ramin.golestanian@ds.mpg.de

Originalpublikation:

https://www.nature.com/articles/s41565-022-01258-2

Weitere Informationen:

https://www.ds.mpg.de/3985314/221212_GolestanianStructures

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Endlich getrennt

Wissenschaftler der Universitäten Würzburg und Ottawa haben das jahrzehntealte Problem der Unterscheidung von einfachen und mehrfachen Lichtanregungen gelöst. In der Fachzeitschrift Nature stellen sie ihre neue Methode vor. Der Bau…

So entstehen Fussballmoleküle im Weltall

Seit Langem wird vermutet, dass im All sogenannte Fullerene und deren Abkömmlinge entstehen können – grosse Kohlenstoffmoleküle in Fussball-, Schüssel- oder Röhrchenform. Ein internationales Forschungsteam hat nun mit Unterstützung der…

Material, hör zu!

„Sieben, eins, neun, …“: Eine menschliche Stimme spricht Ziffern, ein Material erkennt diese zu rund 97 Prozent korrekt. Entwickelt wurde das System zur Mustererkennung von Physiker:innen der Universität Duisburg-Essen (UDE)…

Partner & Förderer