Mit ringförmigen Sonden zu besseren Vorhersagen der Polymerdynamik

In Schmelzen aus Polymerringen (rot) und Polymerfäden (blau) verknäulen sich beide Molekülarten. Jülicher Neutronenforscher fanden heraus, dass sich mit Hilfe der Ringe die Dynamik der Fäden einfacher und genauer messen lässt als mit herkömmlichen Methoden. Copyright: Forschungszentrum Jülich

Neutronenforscher am Forschungszentrum Jülich haben nun einen Weg gefunden, die oftmals entscheidende seitliche Auslenkung der Moleküle einfacher und genauer als bisher zu untersuchen. Sie nutzen ringförmige Moleküle als Sonden, die sich um die Polymerfäden legen und ihre Seitwärtsbewegungen übernehmen.

Längsbewegungen, die das Ergebnis verfälschen, bilden sie hingegen nicht ab. Mit der Methode lässt sich etwa die Fließfähigkeit von Polymerschmelzen bei der Produktion von Kunststoffen besser vorhersagen. Die Ergebnisse wurden in der Fachzeitschrift „Physical Review Letters“ als „Editor's Suggestion“ veröffentlicht und auf dem Webportal „Physics“ der Amerikanischen Physikalischen Gesellschaft kommentiert. (DOI: 10.1103/PhysRevLett.115.148302).

Viele Produkte, die wir jeden Tag verwenden, bestehen aus Polymeren, zum Beispiel Autoreifen, Gummibänder oder Getränkeflaschen. Auch in der Natur spielen solche langkettigen Moleküle eine wichtige Rolle, zu den Polymeren zählen etwa die Proteine und die DNA.

Ihre stofflichen Eigenschaften sind sowohl für die Herstellung von Kunststoffen als auch für die Funktionsfähigkeit von Proteinen oder DNA essentiell. Bei der Produktion von Kunststoffen etwa werden Polymerschmelzen durch lange Röhrensysteme geleitet. Die Viskosität der Schmelzen genau vorhersagen und kontrollieren zu können, hilft dabei, die Anlagen und Prozesse besser anzupassen – und somit Kosten zu sparen.

In theoretischen Modellen ist es längst üblich, die Beweglichkeit von Polymeren durch gedachte Röhren zu beschreiben – in der sich der Polymerfaden ähnlich wie eine Schlange in einer echten Röhre bewegt. Gebildet werden diese Röhren von benachbarten Moleküle und es gilt: Je weiter die Röhre, desto mehr Freiraum hat das Molekül und umso höher ist die Beweglichkeit.

Bis jetzt war es allerdings nicht möglich, diesen Bewegungsradius direkt zu erfassen. Die bisherigen Messungen der Polymerbewegung lieferten daher nur ungenaue Ergebnisse, da sich die Polymere nicht nur quer, sondern zusätzlich auch längs zur gedachten Röhre bewegen: Mal „wagen“ sie sich vor, mal ziehen sie sich wieder in die Röhre zurück.

„Diese Längsbewegungen, auch Reptation genannt, fallen bei den Ringen weg, weil es keine losen Enden gibt. Die Ringe bewegen sich nur quer zur Röhre“, erläutert Dr. Sebastian Gooßen vom Jülicher Zentrum für Forschung mit Neutronen. „So lässt sich der Röhrendurchmesser direkt bestimmen; man könnte fast sagen, dass die Ringe ihn „ertasten“. Bisher war es allerdings ausgesprochen schwierig, die benötigten Polymerringe in ausreichender Menge und Qualität herzustellen. Doch mit Hilfe eines neuen Syntheseverfahrens, das wir entwickelt haben, ist uns dies nun gelungen.“

Die Forscher erwarten, dass sich mit ihrer Methode einige offene Fragen der Polymerdynamik klären lassen, zum Beispiel zur Fließfähigkeit von komplexen, verzweigten Polymeren, zu denen die meisten industriell genutzten Polymere zählen.

Möglicherweise wird sich damit eines Tages auch das Rätsel lösen lassen, warum einige Polymerschmelzen fließfähiger werden, wenn man ihnen wenig Raum gibt, wie Prof. Dr. Simone Napolitano von der Freien Universität Brüssel in einem Kommentar zum Artikel vorschlägt. Bis dahin muss die Empfindlichkeit der Jülicher Methode aber noch ein wenig gesteigert werden.

Originalveröffentlichung:
Sensing polymer chain dynamics through ring topology: a neutron spin echo study
S. Gooßen et al.;
Phys. Rev. Lett. 115, 148302 – Published 28 September 2015,
DOI: 10.1103/PhysRevLett.115.148302
http://dx.doi.org/10.1103/PhysRevLett.115.148302

Weitere Informationen:
Physics viewpoint “Caught in the Tube” (engl.): http://physics.aps.org/articles/v8/93
Forschungszentrum Jülich: www.fz-juelich.de
Jülich Centre for Neutron Science: www.fz-juelich.de/jcns/
Institutsbereich Neutronenstreuung (ICS-1/JCNS-1): http://www.fz-juelich.de/ics/ics-1/

Ansprechpartner:

Dr. Sebastian Gooßen, Forschungszentrum Jülich
Jülich Centre for Neutron Science – Neutronenstreuung (ICS-1/JCNS-1)
Tel. 02461 61-4775
E-Mail: s.goossen@fz-juelich.de

Pressekontakt:

Angela Wenzik, Wissenschaftsjournalistin
Forschungszentrum Jülich
Tel. 02461 61-6048
E-Mail: a.wenzik@fz-juelich.de

Media Contact

Angela Wenzik Forschungszentrum Jülich

Weitere Informationen:

http://www.fz-juelich.de

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Quanten-Shuttle zum Quantenprozessor „Made in Germany“ gestartet

Das Rennen um den Quantencomputer ist im vollen Gange. In der Grundlagenforschung gehört Deutschland schon lange zur Weltspitze. Ein Zusammenschluss des Forschungszentrums Jülich mit dem Halbleiter-Hersteller Infineon will die Ergebnisse…

Künstliche Intelligenz verstehbar machen – Erklärprozesse gestalten

Wissenschaftler der Universitäten Paderborn und Bielefeld erforschen neue Form der Mensch-Maschine-Interaktion Bewerbungen aussortieren, Röntgenbilder begutachten, eine neue Songliste vorschlagen – die Mensch-Maschine-Interaktion ist inzwischen fester Bestandteil des modernen Lebens. Grundlage…

Ultraschnelle Elektronenmessung liefert wichtige Erkenntnisse für Solarindustrie

Mit einem neuen Verfahren analysieren Physiker der TU Bergakademie Freiberg in Kooperation mit Forschenden aus Berkeley (USA) und Hamburg erstmals die Prozesse in einem Modellsystem für organische Solarzellen innerhalb von…

Partner & Förderer