Materiezustände durch Licht verändern

Durch die Bestrahlung der Quantenmaterie mit Licht, das in seiner Frequenz variiert, wird die die kristalline Ordnung unterdrückt unterdrückt und ein Suprafluid entsteht. UHH/Mathey group

Physikerinnen und Physikern der Universität Hamburg ist es gelungen, mithilfe von Laserpulsen die Ordnung von Quantenmaterie so zu stören, dass ein spezieller Zustand – die sogenannte Suprafluidität – hergestellt werden konnte. Diese Arbeit wurde in der aktuellen Ausgabe von „Physical Review Letters“ veröffentlicht und eröffnet völlig neue Möglichkeiten für die Erzeugung von Materialzuständen mit gewünschten Eigenschaften, aber auch für die lichtinduzierte Supraleitung.

Wenn man Wasser in einen Gefrierschrank stellt, kristallisieren die Wassermoleküle und bilden Eis. Diese Änderung von einer Phase der Materie in eine andere wird als Phasenübergang bezeichnet. Manchmal möchte man diesen Vorgang kontrolliert beeinflussen, um zum Beispiel erfrischendes Slushy-Eis herzustellen – ein Gemisch aus einer festen und einer flüssigen Phase.

Bei Quantenmaterie sind Phasenübergänge komplizierter. Quantenmaterie sind Stoffe, in denen das quantenmechanische Verhalten der Bestandteile, zum Beispiel der Wellencharakter der Elektronenbewegung, überwiegt. Auch die Aggregatszustände sind besonders: Unter bestimmten Einflüssen bildet sich ein sogenanntes Suprafluid, bei dem jede innere Reibung verloren geht und dafür eine hohe Wärmeleitfähigkeit vorhanden ist.

Bisher war die Entstehung von Suprafluid nicht extern steuerbar, doch einem Team von Physikerinnen und Physikern um Prof. Dr. Ludwig Mathey und Prof. Dr. Andreas Hemmerich von der Universität Hamburg ist es nun gelungen, die kristalline Ordnung erfolgreich zu stören. Während bei einer Slushy-Eismaschine rotierende Klingen dafür sorgen, dass die Wassermoleküle nicht kristallisieren und ein fester Eisblock entsteht, hat das Team Licht eingesetzt, um zu verhindern, dass die Kristalle im Quantensystem die für sie typische Ordnung einnehmen.

Die Forscherinnen und Forscher brachten eine Gaswolke aus kalten Atomen zwischen zwei hochreflektierenden Spiegeln ein. Ein externer Pumplaserstrahl wurde auf die Atomwolke gerichtet, wobei das Licht in einer bestimmten Frequenz schwang, um die kristalline Ordnung in kontrollierter Weise zu stören. Physikerinnen und Physiker benutzen den Begriff „Drive“, um diese Art von periodischen Änderungen zu beschreiben.

Ähnlich wie Wasser seine Phase von Flüssigkeit zu Eis ändern kann, zeigt dieses Licht-Materie-System einen Phasenübergang, einen Quantenübergang. Wenn die Intensität des Strahls stark genug ist, organisieren sich die ungeordneten Atome aus der Gasphase normalerweise spontan in einem kristallinen Schachbrettmuster. Diese Selbstorganisation verhindert die Entstehung eines Suprafluids, die durch die kristalline Ordnung unterdrückt wird. Die Forscherinnen und Forscher zeigten, dass man mit etwas „Drive“ – also einer gezielten Variation der Frequenz – die Balance zugunsten der Suprafluidphase kippen kann.

„Wir beobachten in unseren Computersimulationen, dass eine periodische Modulation der Pumpintensität die dominierende selbstorganisierte Phase destabilisieren kann“, erklärt Hauptautor Jayson Cosme von der Laserphysik der Universität Hamburg. „Dadurch kann die zuvor instabile homogene Phase wieder aufsteigen und das Suprafluid entsteht. Es ist lichtinduzierte Suprafluidität.“ Ko-Autor Andreas Hemmerich ergänzt: „Man könnte erwarten, dass sich das System einfach nur erwärmt, wenn wir es schütteln. Es war faszinierend, eine deutliche Signatur des Suprafluids zu beobachten.“

Das Prinzip, durch gezielten Einsatz von Licht eine Phase zu verstärken oder zu unterdrücken, wurde bereits in vielen Bereichen der Physik angewandt, etwa bei sogenannten Supraleitern. „Wir haben diese Art der Lichtsteuerung der Suprafluidität vorgeschlagen, um das Prinzip zu demonstrieren, das für die lichtinduzierte Supraleitung angenommen wird“, erklärt Ludwig Mathey. Mit diesem Befund wird ein neues Kapitel der Festkörperphysik eröffnet, in dem Wissenschaftlerinnen und Wissenschaftler nicht nur Gleichgewichtseigenschaften von Materie messen, sondern über Lichtsteuerung einen Zustand mit gewünschten Eigenschaften erzeugen können.

Publikation:

Dynamical Control of Order in a Cavity-BEC System, J. G. Cosme, C. Georges, A. Hemmerich, and L. Mathey, Phys. Rev. Lett. 121, 153001 (2018). DOI: https://doi.org/10.1103/PhysRevLett.121.153001

Für Rückfragen:

Prof. Dr. Ludwig Mathey
Universität Hamburg
Fachbereich Physik
Telefon: +49 40 8998-6505
E-Mail: lmathey@physnet.uni-hamburg.de

Prof. Dr. Ludwig Mathey
Universität Hamburg
Fachbereich Physik
Telefon: +49 40 8998-6505
E-Mail: lmathey@physnet.uni-hamburg.de

Dynamical Control of Order in a Cavity-BEC System, J. G. Cosme, C. Georges, A. Hemmerich, and L. Mathey, Phys. Rev. Lett. 121, 153001 (2018). DOI: https://doi.org/10.1103/PhysRevLett.121.153001

Media Contact

Birgit Kruse idw - Informationsdienst Wissenschaft

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Der Klang der idealen Beschichtung

Fraunhofer IWS transferiert mit »LAwave« lasergestützte Schallanalyse von Oberflächen in industrielle Praxis. Schallwellen können auf Oberflächen Eigenschaften verraten. Parameter wie Beschichtungsqualität oder Oberflächengüte von Bauteilen lassen sich mit Laser und…

Individuelle Silizium-Chips

… aus Sachsen zur Materialcharakterisierung für gedruckte Elektronik. Substrate für organische Feldeffekttransistoren (OFET) zur Entwicklung von High-Tech-Materialien. Wie leistungsfähig sind neue Materialien? Führt eine Änderung der Eigenschaften zu einer besseren…

Zusätzliche Belastung bei Knochenmarkkrebs

Wie sich Übergewicht und Bewegung auf die Knochengesundheit beim Multiplen Myelom auswirken. Die Deutsche Forschungsgemeinschaft (DFG) fördert ein Forschungsprojekt der Universitätsmedizin Würzburg zur Auswirkung von Fettleibigkeit und mechanischer Belastung auf…

Partner & Förderer