Magnetismus macht Kühlschränke stromsparender

Kühltechnologie, die aufgrund der magnetischen Eigenschaften bestimmter Materialien funktioniert, hat das Potenzial, Kühlschränke und Klimaanlagen energieeffizienter und umweltfreundlicher zu machen.

Noch funktioniert das nur im Labor, doch haben Wissenschaftler am Imperial College London (ICL) nun gezeigt, das kristalline Strukturen in verschiedenen Legierungen direkt beeinflussen, wie stark sich diese Metalle unter einem Magnetfeld erwärmen und ohne dieses abkühlen. So können sie beurteilen, welche Substanzen besonders vielversprechend für die magnetische Kühlung sind.

„Das ist eine spannende Entdeckung, denn das bedeutet, dass wir eventuell maßgeschneiderte Materialien aufbauen können“, sagt Lesley Cohen, Physikprofessor am ICL. Dadurch könnten magnetische Kühlschränke Realität werden.

„Das ist von großer Bedeutung, denn eine energieeffiziente Alternative zu unseren jetzigen Kühlschränken und Klimaanlagen ist entscheidend, um CO2-Emissionen zu reduzieren und dem Klimawandel zu begegnen“, betont Cohen. Der Energieverbrauch magnetischer Kühlsysteme könnte laut ICL 20 bis 30 Prozent unter dem der aktuell besten Lösungen liegen. Insgesamt bedeutet das ein gigantisches Sparpotenzial, da etwa in den USA in den Sommermonaten rund die Hälfte des Energieverbrauchs allein für Kühlung aufgewendet wird. Ein weiterer Vorteil der magnetischen Kühlung ist, dass bei der Herstellung entsprechender Geräte auf Ozon-Killer und Treibhausgase verzichtet werden könnte.

Das Kühlkonzept funktioniert so, dass ein magnetisches Material – meist eine Metalllegierung – einem äußeren Magnetfeld ausgesetzt wird und sich erwärmt. Die entstehende Hitze wird durch Wasserkühlung abgeführt, um wieder die ursprüngliche Temperatur zu erreichen. Wird danach das Magnetfeld abgeschaltet, kühlt das Material noch deutlich weiter ab. Im Labor wurde das bereits erfolgreich umgesetzt. Für die praktische Anwendung etwa bei Kühlschränken sind allerdings Materialien erforderlich, die bei Raumtemperatur einen starken Kühleffekt erzielen können und nicht an Effizienz verlieren, wenn der Kühl- und damit Magnetisierungsvorgang oft wiederholt wird.

Die ICL-Forscher haben nun genau untersucht, wie sich die Temperatur verschiedener Materialien verändert, wenn sie aus einem Magnetfeld entfernt werden und welche physikalischen Prozesse dabei ablaufen. „Unsere Arbeit zeigt, wie wichtig es ist, die Struktur der Materialien und ihre Reaktion auf Magnetfelder auf mikroskopischer Ebene zu verstehen“, sagt Cohen. Aufgrund der gewonnenen Erkenntnisse könnte es möglich werden, ein Material mit der Mikrostruktur beginnend so aufzubauen, dass es die Anforderungen für einen magnetischen Kühlschrank perfekt erfüllt.

Media Contact

Thomas Pichler pressetext.austria

Weitere Informationen:

http://www.imperial.ac.uk

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer