Kristallstrukturen in Super-Zeitlupe

Künstlerische Darstellung der Ladungsdichtewelle im ultraschnellen Transmissions-Elektronenmikroskop.
Foto: Dr. Florian Sterl/Sterltech Optics

Göttinger Physiker filmen Phasenübergang mit extrem hoher Auflösung

Laserstrahlen können genutzt werden, um die Eigenschaften von Materialien gezielt zu verändern. Dieses Prinzip ermöglicht heute weitverbreitete Technologien wie die wiederbeschreibbare DVD. Die zugrundeliegenden Prozesse laufen allerdings häufig unvorstellbar schnell und auf so kleinen Längenskalen ab, dass sie sich nicht direkt beobachten lassen. Forschern der Universität Göttingen und des Max-Planck-Instituts (MPI) für biophysikalische Chemie in Göttingen ist es nun erstmals gelungen, die Laser-Umwandlung einer Kristallstruktur mit Nanometer-Auflösung und in Zeitlupe in einem Elektronenmikroskop zu filmen. Die Ergebnisse sind in der Fachzeitschrift Science erschienen.

Das Team um Thomas Danz und Prof. Dr. Claus Ropers nutzte dabei eine außergewöhnliche Eigenschaft eines Materials, welches aus atomar dünnen Lagen von Schwefel- und Tantal-Atomen aufgebaut ist. Bei Raumtemperatur ist dessen Kristallstruktur wellenförmig verzerrt – es bildet sich eine „Ladungsdichtewelle“ aus. Bei höheren Temperaturen tritt ein sogenannter Phasenübergang auf, bei dem die ursprüngliche Welligkeit schlagartig verschwindet. Auch ändert sich dabei drastisch die elektrische Leitfähigkeit, ein interessanter Effekt für die Nano-Elektronik.

In ihren Experimenten riefen die Forscher diesen Phasenübergang durch kurze Laserpulse hervor und filmten die Reaktion der Ladungsdichtewelle. „Wir beobachten die schnelle Ausbildung und das Wachstum von kleinsten Regionen, in denen das Material geschaltet wurde“, erläutert Erstautor Thomas Danz von der Universität Göttingen.

„Mit dem in Göttingen entwickelten ultraschnellen Transmissions-Elektronenmikroskop erreichen wir dabei die bisher höchste Zeitauflösung weltweit.“ Die Besonderheit des Experiments liege weiterhin in einer neu entwickelten Abbildungstechnik, welche speziell auf den beobachteten Phasenübergang empfindlich ist. Damit nehmen die Göttinger Physiker Bilder auf, die sich ausschließlich aus Elektronen zusammensetzen, die an der Welligkeit des Kristalls gestreut wurden.

Ihre Herangehensweise erlaubt den Forschern grundlegende Einblicke in lichtinduzierte Strukturänderungen. „Wir sind bereits heute in der Lage, unsere Abbildungstechnik auf weitere Kristallstrukturen zu übertragen“, sagt Prof. Dr. Claus Ropers, Arbeitsgruppenleiter am IV. Physikalischen Institut der Universität Göttingen und Direktor am MPI für biophysikalische Chemie.

„So beantworten wir nicht nur fundamentale Fragen der Festkörperphysik, sondern eröffnen auch neue Perspektiven für optisch schaltbare Materialien in zukünftiger, intelligenter Nano-Elektronik.“

Wissenschaftliche Ansprechpartner:

Thomas Danz
Georg-August-Universität Göttingen
Fakultät für Physik
IV. Physikalisches Institut – Nano-Optik und ultraschnelle Dynamik
Friedrich-Hund-Platz 1, 37077 Göttingen
E-Mail: thomas.danz@uni-goettingen.de

Prof. Dr. Claus Ropers
Georg-August-Universität Göttingen
Fakultät für Physik
IV. Physikalisches Institut – Nano-Optik und ultraschnelle Dynamik
und Max-Planck-Institut für biophysikalische Chemie – Abteilung Ultraschnelle Dynamik
Friedrich-Hund-Platz 1, 37077 Göttingen
Telefon 0551 39-24549
E-Mail: claus.ropers@uni-goettingen.de
www.uni-goettingen.de/de/598878.html

Originalpublikation:

Th. Danz et al., Ultrafast nanoimaging of the order parameter in a structural phase transition, Science 2021, Doi: https://doi.org/10.1126/science.abd2774

https://www.uni-goettingen.de/de/3240.html?id=6143

Media Contact

Thomas Richter Öffentlichkeitsarbeit
Georg-August-Universität Göttingen

Alle Nachrichten aus der Kategorie: Physik Astronomie

Von grundlegenden Gesetzen der Natur, ihre elementaren Bausteine und deren Wechselwirkungen, den Eigenschaften und dem Verhalten von Materie über Felder in Raum und Zeit bis hin zur Struktur von Raum und Zeit selbst.

Der innovations report bietet Ihnen hierzu interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Astrophysik, Lasertechnologie, Kernphysik, Quantenphysik, Nanotechnologie, Teilchenphysik, Festkörperphysik, Mars, Venus, und Hubble.

Zurück zur Startseite

Kommentare (0)

Schreib Kommentar

Neueste Beiträge

Autonomes High-Speed-Transportfahrzeug für die Logistik von morgen

Schwarm-Logistik Das Fraunhofer-Institut für Materialfluss und Logistik IML entwickelt eine neue Generation fahrerloser Transportfahrzeuge: Der LoadRunner kann sich dank Künstlicher Intelligenz und Kommunikation über 5G im Schwarm organisieren und selbstständig…

Neue Möglichkeiten in der druckunterstützten Wärmebehandlung

Das Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden verstärkt seine technologische Kompetenz im Bereich der druckunterstützten Wärmebehandlung mit der Neuanschaffung einer Quintus Hot Isostatic Press QIH 15L. Damit…

Virenfreie Luft durch neuartigen Raumlüfter

In geschlossenen Räumen ist die Corona-Gefahr besonders groß. Aerosole spielen eine entscheidende Rolle bei der Übertragung von Sars-CoV-2 und erhöhen die Konzentration der Corona-Viren in Büros und Co. Ein neuartiges…

Partner & Förderer